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Outline

• Introduction: AGN, Reverberation Mapping and radius-Luminosity relation 

• Observations: Sample and Data quality 

• Methods: Time delay determination, BH estimation, AGN Luminosity 

• Results: BLR sizes, AGN Luminosities and Accretion Rate 

• Radius-Luminosity Relation: Hα r-L results and comments on the scatter 

• Summary



Introduction
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Broad Line Region 

(Netzer+90)

AGN Model: SMBH, AD, BLR 
 
Method: Reverberation Mapping 
 - monitor AGN variability 
 - measure time delays between changes in 
    the continuum and line emission 

Applications:  
 - Galaxy evolution, growth and distribution of BH 
 
BLR Radius - Luminosity relation: 
 - Hβ emission line best studied (~120 sources) 
         ;    (Bentz+13) 

 - exact slope unclear 
 - significant scatter in the relation 
 - accretion rate dependence 
 - used for BH mass estimation 
 
 

RBLR ∝ Lβ β ∼ 0.5

(Martinez-Aldama+19)



Observations
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Sample of ~ 80 AGN: 
 - Seyfert Galaxies from Veron-Cetty Catalog  (VC&V+10) 
 - Nearby AGN redshift between 0.01 and 0.05 
 - Vmag < 16 
 - Maximal expected delay < 100 days (r-L relation) 

Settings: 
 - Continuum: Broad band BV filters  
 - BLR: Narrow band filters centered at 670,  
680 or 690 nm, covering the broad H  emission line 
 
Observations: 
 - 3 optical telescopes: v6(15cm), BESTII(25cm), v16(40cm) 
 - Planned monitored campaign ~ 6 months 
 - Optical monitoring during years 2011-2018  

α



Observations
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Observations
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Increasing RandomnessData Screening: 
 - Weather conditions and occasional telescope issues 
 - Duration: Long enough light curves compared to expected delay 
                     optimal: 3 times larger than delay 
 - Cadence: ensure well-sampled light curves  
 
Light curve Variability: 
 - Fractional variability  and variance : quantify the  
   intrinsic AGN variability and discard low variability <0.01 

Light curve Quality: 
 - Von Neumann estimator ( ) - check randomness of the 
   light curves and ensure reliable variability patterns 

 - Ratio : estimation quality of light curve 

Fvar s2

Fvar

σ2
VN

η = σ2
VN/s2

Screened final AGN Sample: 48 AGN 
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Screened final AGN Sample: 48 AGN 



Time delay determination:   formalismτ-α
Methods

Assumption: 
 - BLR variability model = combination of continuum and a 
   lagging component that contributes by a factor of  to the band 
 -  takes values between 0 and 1 
             = 0 (no varying component in the line) 
              = 1  (pure emission line) 

Calculation: 
 - 2D Pearson correlation coefficient:  
 - Searching for maximal  requiring   
 - Correlation coefficient  easy to implement: 
   combination of correlation and autocorrelation functions 
 - Final lag t: delay  which maximize  and  

Result: 
 - Decomposition between continuum and emission line 
    at the light curve level, without previous spectral knowledge

α
α

α
α

r(τ, α)
r(τ, α) ∂r(τ, α)/∂α = 0
re(τ)

τ re(τ) (0 ≤ α ≤ 1)
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Time delay determination:   formalismτ-α
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General steps: 

 - Default limit  between 0.25 and 0.85 
 - Centroid: weighted average for lag range within

; analog to the ICCF centroid 
 - Statistics and Confidence level 

α

0.8 × (Re,max − Re,min)

Methods

Simulations and testing: 
 - Check formalism, compare with correlation methods. 
   ICCF(Gaskel&Sparke86), Javelin (Zu+16) 
 



Time delay determination:   formalismτ-α
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Example formalism for Mrk841, z = 0.036 

- Peak/centroid BLR delay 22 days  - Peak/centroid  ~ 0.4 Varying component within the Narrow Band is 40% 

- restframe 21.2 light days

tBLR ∼ α
RBLR = ctBLR/(1 + z) ∼

Result: 80% of the sources with Confidence level > 90%

Methods



BH mass estimation

Methods
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Virial theorem: 
relate the BLR's size and the velocity of the gas in the BLR 

 

 
Estimate H  FWHM: 
 - Single-epoch spectra: 
     - Simultaneously with photometry for 40% of the sources (FAST, SALT) 
     - Additional spectra from Literature (6dF, BAT, single studies)  
 - Procedure: 
     - Subtract narrow components [NII] doublet, H  
     - Broad H  component: mid + broad or broad 
     - Assume  unity  
       

MBH = RBLR
v2

G
∼ ⟨ f⟩ ctBLR

FWHM2
Hα

G

α

α
α
⟨ f⟩

 Depends on AGN geometry. 
Can vary from 1 - 6  
(Grier+13, Graham+11, Park+12) 

⟨ f⟩

Result: 45 objects BH Mass estimations



AGN Luminosity and accretion rate estimation

Methods
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Accretion rate estimation: (Du+16) 
 

 

 
 = AGN luminosity 
 = BH mass 

 = AGN Inclination

·ℳ = 20.1 ( l44

cos(θ) )
3/2

m−2
7

l44
m7
θ

Remove the host galaxy contamination from the AGN: 

 - Flux Variation Gradient (FVG): AGN vary in time, host remains constant 
    Intersection: host component. (Choloniewski+81,Winkler+92) 

 - Check FVG for different epochs: Method to find Changing Look? 

Result: host component successfully subtracted in 40 objects 
             11 High accreting objects

Multi-epoch FVG



Results
BLR Sizes:  
- results for 47 Sources out of the 80 initially 
- ~ 80% sources with Confidence level > 90% 

40/48 objects ~ 80% successful host subtraction 

30 single-epoch BLR sizes and AGN luminosity 

9 multi-epoch sources 

45 objects with BH mass estimation 
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Radius — Luminosity Relation
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Diferent literature H  samples 
 - 14 High luminosity QSO (0.08 < z < 0.3 ): Kaspi’00 
 - 7 sources Nearby Seyferts (z ~0.01): Bentz’10 
 - 23 SDSS sources high redshifted (0.1 < z < 0.45 ): 
   Shen’23, revised version from Grier’17 
 - 5 sources (redshifts 0.07 < z < 0.2) Seoul Cho’23 
 - New sources: 37 Seyferts (0.01 < z < 0.05) 
                             28 single-epoch and 9 multi-epoch 
Scatter: 
 - All H  studies = 0.32dex 
 - SDSS = 0.34dex, This work = 0.28dex 
 - Compite with big telescopes 
 
 Previous studies on broad emission lines: 
 - H  (~120 sources, Bentz+13, Du+16, MAl+19) 
 - MgII (~30-40 sources Czerny+19, Yu+22)  
 - CIV (~30-40 sources Lira+18, Kaspi+22) 
 

α

α

β

This work

Main results

Result: Add a total of 37 Sources in H  with scatter of 0.28dexα

Total 86 sources



Radius — Luminosity Relation
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Different observations epochs 
 - Different lag/luminosity at different observing seasons 
 - Stable results for 6 objects with scatter < 0.07dex 
 - Comparing with the overall scatter (~0.3dex), single 
   scatter does not affect much (~0.1dex) 
 - No intrinsic relation found:  
        - 3 objects follow slope ~0.5 
        - Other objects: random or stable 
 - Multi-epoch sample not large enough to lead to 
   robust conclusions 
 - Objects tend to lie within a range of the relation, so that 
the overall r-L relation and its scatter is not only due to 
uncertainties in the BLR size or the luminosity 

Multi-epoch observations



Radius — Luminosity Relation
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Accretion rate dependence is biased by definition: 
 - More luminous objects move to the right hand, leading 
   to be underneath the sample 

 - BH mass depends on time delay. If time delay is shorter, 
   accretion rate is higher and high accreting objects stay 
   underneath the sample  

- Offset High accreting objects:  ~ -0.14 with scatter of 0.30dex 

Ongoing: evaluate independently the accretion rate  
                 

μ

Accretion rate dependence

·ℳ = 20.1 ( l44

cos(θ) )
3/2

m−2
7

VERY	
PRELIM

INARY
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 - Add a total of 37 sources to the previous H  RM results 
 - Large scatter ~0.28dex, but smaller than previous SDSS results ~0.32dex 
 - Estimate dependence with dimensionless accretion rate 
 - H  emission line helpful for investigating origin of the r-L scatter  
 
H  emission line for cosmological purposes 
- Advantages:  
     - bright, prominent line 
     - easier to observe in PRM with small telescopes and Narrow Bands 
     - Upcoming LSST survey will observe H  within Broad bands: z, y 
     - Helpful to reduce scatter in the r-L relation 

- Disadvantages:  
      - Optical regime: H  possible observations up to redshift z~0.5-0.6,  
                                      where H  (z~1), MgII (z~2.5), CIV (z~5) 
      - Expected larger delays, needed longer observations 

α

α

α

α

α
β

Radius - Luminosity Relation
Summary

Hβ Compilation

(Panda+19)



Summary
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- Small telescopes (~25cm): provide good data quality and good 
cadence to explore AGN and the r-L relation for H  

- Photometric Reverberation mapping technique helps to improve 
the AGN time delays found with spectroscopic techniques 

- Present a new formalism, an easy method for determining time-
delays in the PRM context which will help for upcoming surveys, 
such as LSST 

- The exploration of the Flux-Flux diagrams to find Changing look 
candidates in new surveys  

- H  emission line suitable for exploring the origin of the r-L scatter 
- Advantage: bright line, easier to observe in PRM with small 
telescopes and Narrow bands. 
 - Helpful to check origin of the scatter in the r-L relation 
 - Homogeneous sample  
- Disadvantage: optical observations up to redshift 0.5-0.6 

α

α



Thank you!
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Radius — Luminosity Relation
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MgII

~0.4-0.5

~0.4-0.5

This work

• Uncertainties: time delay determination and real BLR size, BH mass 
(unknown AGN geometry) 

• Uncertainties: AGN luminosity (removing host component), extinction 
within AGN 

• All produce uncertainties in Accretion rate



Light curve quality

Backup

Von Neumann     

Variance  

Definition of 

̂σ2
vN =

1
2(n − 1)

n−1

∑
i=1

(Xi+1 − Xi)2

s2 =
1

n − 1

n

∑
i=1

(Xi − X̄)2

η = σ2/s2
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Randomly shift light curve data 

Probability to get this time delay and 
alpha for random data

Confidence level



Time delay determination:  τ-α formalism: Simulations

Simulations: 
 - Test formalism with simulated light curves 
 - Compare results to widely used ICCF:  
   ICCF start showing smaller delays for α < 0.6 
 - Delay well recovered until α ~ 0.2  
   20% varying component 
 - Depending on sampling and noise: α well 
   recovered until 0.3, then overestimated

23

Backup
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Scatter

Radius — Luminosity Relation

• BLR size and AGN geometry: foreshortening effect (observe 
shorter  
delays) if the BLR clouds are located near the observer 

• Material between AD and observer within AGN affects the AGN 
luminosity 

• Multi-epoch lag-luminosity scatter: which is the ‘stable’ BLR 
size/luminosity? 

• Changing Look AGN, affect the r-L calibration 

• Accretion rate plays a role 

• Another estimations for the accretion rate,  
like done for Hbeta with RFe  

• Improve r-L calibration for Cosmology parameters 

Hβ Compilation


