Photometric Reverberation Mapping of $H\alpha$ emission line in Nearby Seyfert Galaxies

CATALINA SOBRINO FIGAREDO^{1,2,3} DORON CHELOUCHE^{1,2} MARTIN HAAS³ SHAY ZUCKER⁴ SHAI KASPI⁵ MARTIN W. OCHMANN^{3,6} ROLF CHINI^{3,7,8} MALTE A. PROBST⁶ WOLFRAM KOLLATSCHNY⁶

¹Department of Physics, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
²Haifa Research Center for Theoretical Physics and Astrophysics, University of Haifa, Haifa 3498838, Israel
³Ruhr University Bochum, Faculty of Physics and Astronomy, Astronomical Institute (AIRUB), 44780 Bochum, Germany
⁴Department of Geosciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
⁵School of Physics and Astronomy and Wise Observatory, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
⁶Institut fur Astrophysik und Geophysik, Universitat Gottingen, Friedrich-Hund Platz 1, D-37077 Gottingen, Germany
⁷Universidad Cato'lica del Norte, Instituto de Astronom'ıa, Avenida Angamos 0610, Antofagasta, Chile
⁸Polish Academy of Sciences, Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warszawa, Poland

Szczecin 2024

Outline

- Introduction: AGN, Reverberation Mapping and radius-Luminosity relation
- Observations: Sample and Data quality
- Methods: Time delay determination, BH estimation, AGN Luminosity
- **Results:** BLR sizes, AGN Luminosities and Accretion Rate
- Radius-Luminosity Relation: H α r-L results and comments on the scatter
- Summary

2

Introduction

AGN Model: SMBH, AD, BLR

Method: Reverberation Mapping

- monitor AGN variability
- measure time delays between changes in the continuum and line emission

Applications:

- Galaxy evolution, growth and distribution of BH

BLR Radius - Luminosity relation:

- Hβ emission line best studied (~120 sources)

$$R_{\rm BLR} \propto L^{\beta}; \beta \sim 0.5$$
 (Bentz+13)

- exact slope unclear
- significant scatter in the relation
- accretion rate dependence
- used for BH mass estimation

Observations

Sample of ~ 80 AGN:

- Seyfert Galaxies from Veron-Cetty Catalog (VC&V+10)
- Nearby AGN redshift between 0.01 and 0.05
- Vmag < 16
- Maximal expected delay < 100 days (r-L relation)

<u>Settings:</u>

- Continuum: Broad band BV filters
- BLR: Narrow band filters centered at 670, 680 or 690 nm, covering the broad H α emission line

Observations:

- 3 optical telescopes: v6(15cm), BESTII(25cm), v16(40cm)
- Planned monitored campaign ~ 6 months
- Optical monitoring during years 2011-2018

Observations

Data Screening:

- Weather conditions and occasional telescope issues
- Duration: Long enough light curves compared to expected delay optimal: 3 times larger than delay
- Cadence: ensure well-sampled light curves

Light curve Variability:

- Fractional variability F_{var} and variance s^2 : quantify the intrinsic AGN variability and discard low variability F_{var} <0.01

Light curve Quality:

- Von Neumann estimator ($\sigma_{\rm VN}^2$) check randomness of the light curves and ensure reliable variability patterns
- Ratio $\eta = \sigma_{\rm VN}^2/s^2$: estimation quality of light curve

<u>Screened final AGN Sample:</u> 48 AGN

Increasing Randomness

6

Screened final AGN Sample: 48 AGN

Object	z^1	D^1_L		RA			DEC		Type ²	Vmag ²
5		[Mpc]	h	min	sec	0	/	//	51	U
HE0003-5023	0.0345	149	0	05	43.1	-50	06	55	S 1	14
MRK335	0.02578	111	0	06	19.5	+20	12	11	NLS1	13.85
WPVS_7	0.02861	127	0	39	15.9	-51	17	1.5	NLS1	15.28
IRAS01089-4743	0.02392	105	01	11	09.7	-47	27	37.23	S 1	14.53
NGC985	0.04314	193	02	34	37.7	-08	47	15.44	S1.5	14.28
NGC1019	0.02434	106	02	38	27.4	+01	54	28	S1.5	14.95
ESO549-G49	0.02627	117	04	02	25.8	-18	02	52	S 1	14.2
3C120	0.03301	149	04	33	11.1	+05	21	15	S1.5	15.05
MCG-02.12.050	0.03600	164	04	38	14.1	-10	47	45	S 1	15
AKN120	0.03271	148	05	16	11.4	+00	08	59	S 1	14.59
RXSJ06225-2317	0.03778	174	06	22	33.4	-23	17	42	S 1	14.85
ESO490-IG26	0.02485	114	06	40	11.8	-25	53	38	S 1	15
MRK705	0.02879	135	09	26	3.3	+12	44	3	S1.2	14.6
MRK1239	0.01993	94.7	09	52	19.1	+01	36	44	NLS1	14.39
WPVS48	0.0370	173	09	59	42.6	-31	12	59	NLS1	14.78
IRAS09595-0755	0.055	246.9	10	02	0.1	-08	09	41	S 1	14.64
ESO374-G25	0.02367	111	10	03	23.6	-37	33	39	S 1	15.29
RX J1103.2-0654	0.02606	123	11	03	15.8	-06	54	10	S 1	13.34
ESO438-G09	0.02401	113	11	10	48	-28	30	4	S 1	14.17
HE1136-2304	0.0270	127	11	38	51.2	-23	21	35	CL	17.4
HE1143-1810	0.03295	155	11	45	40.4	-18	27	15.51	S1.5	14.7^{*}
PG1149-110	0.0490	230	11	52	3.5	-11	22	23	S1.2	15.46
NGC4726	0.02543	120	12	51	32.3	-14	13	17	S 1	14.2
ESO323-G77	0.01501	71.3	13	06	26.2	-40	24	52	S1.2	13.42
MRK1347	0.04995	234	13	22	55.5	+08	09	42	S 1	14.59
IC4329A	0.01605	75.9	13	49	19.3	-30	18	34	S1.2	13.66
ESO578-G09	0.03502	163	13	56	36.7	-19	31	44	S 1	15.2
PGC50427	0.02346	109	14	08	6.7	-30	23	53	S1.5	15.3
ESO511-G030	0.02239	104	14	19	22.3	-26	38	41	S1	14.9
MRK841	0.03642	168	15	04	1.2	+10	26	16	S1.5	14.27
NGC5940	0.03408	157	15	31	18.1	+07	27	27	S1	14.9
RXSI17414+0348	0.0230	103	17	41	28.1	+03	48	51	S1	15.3
MCG+03-47-002	0.04000	180	18	27	14.7	+19	56	19.0	S1	15.3
ESO141-G55	0.03711	168	19	21	14.3	-58	40	13	S1 2	13 64
CTSG03 04	0.04002	181	19	38	04.3	-51	09	49.6	S1.2	15.2
ESO399-IG20	0.0250	110	20	06	58.1	-34	32	55	NLS1	14 51
NGC6860	0.01488	65 3	20	08	47.1	-61	06	0	S1 5	13 53
PGC64989	0.01937	83.5	20	34	31.4	-30	37	29	S1.5	13.3
MRK509	0.0344	152	20	<u> </u>	97	-10	43	$\frac{2}{245}$	S1 5	13.2
1H2107-097	0.02698	117	20	09	99	-09	40	24.5 15	S1.5 S1.2	14 39
HE2128-0221	0.05248	236	21	30	49.9	-02	08	14 7	S1.2	17.3°
NGC7214	0.02385	103	$\frac{21}{22}$	09	47.7 07.6	-02	48	34 1	S1 2	14 10
UGC12138	0.02509	105	$\frac{22}{22}$	40	17.0	-27 +08	03	14.09	S1.2 S1.8	14.10
NGC7460	0.02509	67.2	22	03	17.0	±08	52	26 30	S1.0 S1 5	13.04
F1041	0.03347	148	23	17	30.2	-42	52 47	05.39	S1.5	15.04
NGC7603	0.03347	17/	23	18	56.6	- <i>-+2</i> +00	т, 1/	38	S1 5	1/ 01
IR & \$73776_38/13	0.02070	150	23	25	20.0	_38	26	<u>10</u> 2	S1.5 S1	14.01
UM163	0.03343	146	23	39	32.3	-02	27	45	S1.5	14.86

7

Methods Time delay determination: τ - α formalism

Assumption:

- BLR variability model = combination of continuum and a lagging component that contributes by a factor of α to the band
- α takes values between 0 and 1

 $\alpha = 0$ (no varying component in the line)

 $\alpha = 1$ (pure emission line)

Calculation:

- 2D Pearson correlation coefficient: $r(\tau, \alpha)$
- Searching for maximal $r(\tau, \alpha)$ requiring $\partial r(\tau, \alpha)/\partial \alpha = 0$
- Correlation coefficient $r_e(\tau)$ easy to implement: combination of correlation and autocorrelation functions
- Final lag t: delay τ which maximize $r_{e}(\tau)$ and $(0 \le \alpha \le 1)$

Result:

- Decomposition between continuum and emission line at the light curve level, without previous spectral knowledge

$$f_{lc}^{m}(t) = (1 - \alpha)f_{c}(t) + \alpha f_{c}(t - \tau).$$

$$r(\tau, \alpha) = \frac{(1 - \alpha) \operatorname{CCF}(0) + \alpha \operatorname{CCF}(\tau)}{\sqrt{1 - 2\alpha + 2\alpha^2 + 2\alpha(1 - \alpha) \operatorname{ACF}_c(\tau)}}$$

$$\boldsymbol{\alpha}(\tau) = \frac{\operatorname{CCF}(0)\operatorname{ACF}_{c}(\tau) - \operatorname{CCF}(\tau)}{[\operatorname{CCF}(\tau) + \operatorname{CCF}(0)][\operatorname{ACF}_{c}(\tau) - 1]}$$

$$r_e(\tau) = \sqrt{\frac{\text{CCF}^2(0) - 2\text{CCF}(0)\text{CCF}(\tau)\text{ACF}_c(\tau) + \text{CCH}}{1 - \text{ACF}_c^2(\tau)}}$$

Methods Time delay determination: τ - α formalism

Simulations and testing:

- Check formalism, compare with correlation methods.

ICCF(Gaskel&Sparke86), Javelin (Zu+16)

<u>General steps:</u>

- Default limit lpha between 0.25 and 0.85

- Centroid: weighted average for lag range within

 $0.8 \times (R_{e,max} - R_{e,min})$; analog to the ICCF centroid - Statistics and Confidence level

within d

9

Methods Time delay determination: τ - α formalism Example formalism for Mrk841, z = 0.036

- restframe $R_{\rm BLR} = ct_{\rm BLR}/(1+z) \sim 21.2$ light days

- Peak/centroid BLR delay $t_{\rm BLR} \sim 22$ days - Peak/centroid $\alpha \sim 0.4$ Varying component within the Narrow Band is 40%

Result: 80% of the sources with Confidence level > 90%

Methods

BH mass estimation

Virial theorem:

relate the BLR's size and the velocity of the gas in the BLR

$$M_{BH} = R_{BLR} \frac{v^2}{G} \sim \langle f \rangle Ct_{BLR} \frac{FWHM_{H\alpha}^2}{G}$$

 $\langle f \rangle$ Depends on AGN geometry. Can vary from 1 - 6 (Grier+13, Graham+11, Park+12)

Estimate $H\alpha$ FWHM:

- Single-epoch spectra:
 - Simultaneously with photometry for 40% of the sources (FAST, SALT)
 - Additional spectra from Literature (6dF, BAT, single studies)
- Procedure:
 - Subtract narrow components [NII] doublet, Hlpha
 - Broad H α component: mid + broad or broad
 - Assume $\langle f \rangle$ unity

Result: 45 objects BH Mass estimations

Methods

AGN Luminosity and accretion rate estimation Remove the host galaxy contamination from the AGN:

- Flux Variation Gradient (FVG): AGN vary in time, host remains constant Intersection: host component. (Choloniewski+81,Winkler+92)
- Check FVG for different epochs: Method to find Changing Look?

Result: host component successfully subtracted in 40 objects 11 High accreting objects

Accretion rate estimation: (Du+16)

$$\dot{\mathcal{M}} = 20.1 \left(\frac{l_{44}}{\cos(\theta)}\right)^{3/2} m_7^{-2}$$

 l_{44} = AGN luminosity $m_7 = BH mass$ θ = AGN Inclination

Results

BLR Sizes:

- results for 47 Sources out of the 80 initially

- ~ 80% sources with Confidence level > 90%

40/48 objects ~ 80% successful host subtraction

30 single-epoch BLR sizes and AGN luminosity

9 multi-epoch sources

45 objects with BH mass estimation

MRK335	0.02578	2010	$19.0^{+0.4}_{-0.3}$		3.13 ± 0.36	1611.0 ± 259.0	$0.94^{+0.02}_{-0.02}$	$6.1^{+0.79}_{-0.77}$
MRK335	0.02578	2011	$17.5^{+3.9}_{-6.6}$	5.51 ± 0.2	4.9 ± 0.17	1611.0 ± 259.0	$0.87^{+0.23}_{-0.39}$	$14.08^{+7.51}_{-12.7}$
MRK335	0.02578	2014	$12.0^{+0.9}_{-1.1}$	4.87 ± 0.25	4.34 ± 0.23	1611.0 ± 259.0	$0.6^{+0.04}_{-0.05}$	$24.96_{-4.7}^{+3.97}$
WPVS48	0.037	2013	$21.1_{-1.9}^{+0.9}$	2.69 ± 0.2	5.66 ± 0.42	1917.0 ± 24.0	$1.47_{-0.11}^{+0.05}$	$6.13^{+0.86}_{-1.2}$
WPVS48	0.037	2014	$18.3^{+0.6}_{-1.3}$	2.69 ± 0.54	5.66 ± 1.13	1917.0 ± 24.0	$1.27^{+0.04}_{-0.08}$	$8.15^{+2.33}_{-2.52}$
WPVS48	0.037	2018	$19.3^{+4.3}_{-0.3}$	2.29 ± 0.4	4.82 ± 0.84	1917.0 ± 24.0	$1.34^{+0.31}_{-0.02}$	$5.76^{+2.91}_{-1.11}$
ESO438	0.02401	2011	$10.8^{+0.6}_{-1.6}$	3.94 ± 0.74	3.64 ± 0.68	2300.0 ± 167.0	$1.09^{+0.09}_{-0.23}$	$5.68^{+1.09}_{-2.44}$
ESO438	0.02401	2015	$7.7^{+0.8}_{-0.6}$	2.92 ± 0.3	2.68 ± 0.27	2300.0 ± 167.0	$0.78^{+0.13}_{-0.1}$	$7.06^{+2.44}_{-1.84}$
HE1136	0.027	2015	$9.1^{+0.5}_{-0.2}$	0.19 ± 0.12	0.22 ± 0.14	3544.0 ± 221.0	$2.18^{+0.14}_{-0.06}$	$0.02^{+0.01}_{-0.01}$
HE1136	0.027	2016	$17.4_{-3.9}^{+2.2}$	0.74 ± 0.12	0.84 ± 0.14	3544.0 ± 221.0	$4.17^{+0.64}_{-1.13}$	$0.04^{+0.01}_{-0.02}$
HE1136	0.027	2018	$11.2^{+4.2}_{-1.8}$	0.66 ± 0.12	0.75 ± 0.14	3544.0 ± 221.0	$2.69^{+1.02}_{-0.44}$	$0.09^{+0.07}_{-0.03}$
PGC5024	0.02346	2011	$21.6^{+0.9}_{-0.9}$	1.08 ± 0.12	0.93 ± 0.11	2377.0 ± 11.0	$2.34^{+0.1}_{-0.1}$	$0.16\substack{+0.03\\-0.03}$
PGC5024	0.02346	2014	$14.2^{+1.0}_{-0.9}$	1.49 ± 0.16	1.28 ± 0.13	2377.0 ± 11.0	$1.54^{+0.09}_{-0.08}$	$0.6^{+0.13}_{-0.13}$
ESO511	0.02239	2013	$20.9^{+0.7}_{-0.5}$	1.28 ± 0.32	0.99 ± 0.02	3656.0 ± 12.0	$5.36_{-0.11}^{+0.15}$	$0.03_{-0.0}^{+0.0}$
ESO511	0.02239	2014	$19.2^{+0.5}_{-0.6}$	0.71 ± 0.05	0.55 ± 0.04	3656.0 ± 12.0	$4.92^{+0.13}_{-0.15}$	$0.02^{+0.0}_{-0.0}$
RXSJ174	0.023	2012	$19.8^{+0.5}_{-0.5}$	3.16 ± 0.27	2.14 ± 0.21	2222.0 ± 129.0	$1.87^{+0.04}_{-0.04}$	$0.87^{+0.15}_{-0.15}$
RXSJ174	0.023	2014	$23.1^{+5.2}_{-1.2}$	3.21 ± 0.6	2.45 ± 0.46	2222.0 ± 129.0	$2.19^{+0.62}_{-0.14}$	$0.79^{+0.46}_{-0.15}$
ESO141	0.03711	2013	$19.5_{-0.5}^{+0.7}$	12.21 ± 0.84	25.1 ± 1.7	4981.0 ± 578.0	$9.15_{-0.13}^{+0.18}$	$1.47^{+0.4}_{-0.4}$
ESO141	0.03711	2015	$22.2^{+0.2}_{-0.2}$	8.6 ± 0.57	17.2 ± 2.0	4981.0 ± 578.0	$10.42_{-0.11}^{+0.11}$	$0.64_{-0.07}^{+0.07}$
PGC6498	0.01937	2013	$27.6^{+2.3}_{-3.7}$	0.9 ± 0.04	0.45 ± 0.02	3275.0 ± 770.0	$5.7^{+0.43}_{-0.69}$	$0.01_{-0.0}^{+0.0}$
PGC6498	0.01937	2014	$26.0_{-0.3}^{+0.3}$	1.05 ± 0.04	0.52 ± 0.02	3275.0 ± 770.0	$5.37_{-0.07}^{+0.07}$	$0.01_{-0.0}^{+0.0}$

Object	Z	Year	$ au_{ m cent}$	F_{5100}	L_{5100}	FWHM	M_{BH}
J		[days]	[days]	[mJy]	$[10^{43} \text{ erg/s}]$	[km/s]	$[10^7 M_{\odot}]$
HE0003	0.03345	2014	$6.6^{+1.4}_{-1.7}$	2.24 ± 0.61	3.6 ± 0.99	3396.0 ± 0.0	$1.44^{+0.1}_{-0.12}$
WPVS007	0.02861	2012	$10.6^{+0.9}_{-1.0}$	2.19 ± 0.38	2.55 ± 0.45	1557.0 ± 163.0	$0.49^{+0.04}_{-0.05}$
IRAS010	0.02392	2013	$38.3^{+4.0}_{-10.7}$	1.93 ± 0.44	1.53 ± 0.34	1731.0 ± 124.0	$2.2^{+0.26}_{-0.68}$
NGC985	0.04314	2014	$22.2_{-0.8}^{+0.7}$	3.81 ± 0.84	10.42 ± 0.02	4675.0 ± 347.0	$9.12_{-0.37}^{+0.32}$
NGC1019	0.02434	2011	$9.7^{+2.0}_{-0.8}$	0.69 ± 0.09	0.56 ± 0.07	2755.0 ± 80.0	$1.41_{-0.11}^{+0.28}$
3C120	0.03301	2014	$57.1^{+5.9}_{-5.9}$	8.95 ± 0.64	14.4 ± 1.05	2924.0 ± 66.0	$9.27^{+0.96}_{-0.96}$
AKN120	0.0327	2018	$28.1^{+1.4}_{-1.6}$	7.48 ± 0.28	11.9 ± 0.5	5759.0 ± 12.0	$17.7^{+0.6}_{-0.69}$
RXSJ062	0.03778	2013	$19.5^{+0.2}_{-1.4}$	1.25 ± 0.21	2.76 ± 0.46	1506.0 ± 30.0	$0.84\substack{+0.01 \\ -0.06}$
MRK705	0.02879	2013	$15.5^{+1.0}_{-0.7}$	1.97 ± 0.18	2.61 ± 0.24	1919.0 ± 332.0	$1.09\substack{+0.05\\-0.04}$
IRAS095	0.055	2013	$21.4^{+2.5}_{-2.1}$	0.51 ± 0.15	2.32 ± 0.25	2402.0 ± 18.0	$2.3\substack{+0.29 \\ -0.24}$
HE1143	0.03295	2016	$17.5^{+2.5}_{-2.4}$	2.88 ± 0.24	5.03 ± 0.41	2143.0 ± 15.0	$1.53^{+0.27}_{-0.26}$
ESO323	0.01501	2015	$26.7^{+3.6}_{-1.9}$	4.45 ± 0.17	1.61 ± 0.06	4246.0 ± 460.0	$9.3^{+1.39}_{-0.73}$
MRK1347	0.04995	2014	$13.8^{+4.6}_{-1.7}$	1.6 ± 0.28	6.48 ± 1.16	1576.0 ± 540.0	$0.64^{+0.34}_{-0.13}$
ESO578	0.03502	2014	$19.5^{+0.6}_{-0.6}$	1.41 ± 0.17	2.73 ± 0.28	5125.0 ± 14.0	$9.7\substack{+0.31 \\ -0.31}$
MRK841	0.03642	2014	$23.8^{+2.5}_{-2.4}$	3.33 ± 0.18	6.87 ± 0.38	4645.0 ± 734.0	$9.72^{+0.92}_{-0.89}$
NGC5940	0.03408	2014	$5.9^{+0.8}_{-0.7}$	0.95 ± 0.14	1.71 ± 0.26	4033.0 ± 22.0	$1.82^{+0.22}_{-0.2}$
MCG+03	0.04	2013	$16.8^{+0.4}_{-0.5}$	0.28 ± 0.22	0.6 ± 0.5		
CTSG03	0.04002	2013	$17.8^{+0.9}_{-0.9}$	1.04 ± 0.17	2.49 ± 0.41	3042.0 ± 242.0	$3.11\substack{+0.14 \\ -0.14}$
ESO399	0.025	2011	$19.6^{+0.4}_{-0.8}$	2.47 ± 0.34	2.1 ± 0.3	1843.0 ± 81.0	$1.27\substack{+0.03\\-0.07}$
NGC6860	0.01488	2015	$34.7^{+1.0}_{-1.1}$	2.0 ± 0.49	0.61 ± 0.15	3668.0 ± 1016.0	$9.02_{-0.3}^{+0.27}$
MRK509	0.0344	2014	$22.9^{+0.8}_{-0.8}$	7.23 ± 2.38	14.23 ± 0.4	3451.0 ± 32.0	$5.17^{+0.2}_{-0.2}$
1H2107	0.02698	2012	$12.1^{+3.3}_{-0.6}$	4.81 ± 0.12	4.76 ± 0.12	2333.0 ± 447.0	$1.26\substack{+0.23\\-0.04}$
HE2128	0.05248	2016	$8.3^{+0.7}_{-0.9}$	0.59 ± 0.05	2.43 ± 0.2	1660.0 ± 124.0	$0.43\substack{+0.04 \\ -0.05}$
NGC7214	0.02385	2011	$6.9^{+5.2}_{-0.9}$	2.73 ± 0.53	2.08 ± 0.41	3662.0 ± 100.0	$1.77^{+1.03}_{-0.18}$
UGC1213	0.02509	2012	$15.0^{+0.5}_{-0.4}$	2.06 ± 0.49	1.7 ± 0.4	2693.0 ± 269.0	$2.08\substack{+0.08 \\ -0.06}$
NGC7469	0.01627	2012	$9.6^{+3.5}_{-4.8}$	9.66 ± 0.96	3.12 ± 0.31	1615.0 ± 119.0	$0.48^{+0.3}_{-0.41}$
F1041	0.03347	2013	$15.7^{+0.7}_{-1.0}$	0.65 ± 0.19	1.03 ± 0.3	3676.0 ± 886.0	$4.03^{+0.19}_{-0.28}$
NGC7603	0.02876	2014	$35.1^{+1.5}_{-1.3}$	7.16 ± 0.99	7.98 ± 1.1	5778.0 ± 10.0	$22.34^{+1.03}_{-0.89}$
IRAS232	0.0359	2013	$13.9^{+5.2}_{-5.7}$	2.14 ± 0.43	3.94 ± 0.79		
UM163	0.03343	2013	$10.9^{+0.4}_{-0.5}$	1.37 ± 0.2	2.13 ± 0.31	4901.0 ± 77.0	$4.97^{+0.17}_{-0.22}$
ESO549	0.02627	2012	$7.0^{+5.6}_{-1.3}$	< 4.73	< 1.11	2766.0 ± 270.0	$1.02^{+0.91}_{-0.21}$
MCG0212	0.036	2014	$10.8^{+1.3}_{-1.2}$	< 2.31	< 5.67	5585.0 ± 782.0	$6.38^{+0.71}_{-0.65}$
ESO490	0.02485	2011	$13.0^{+4.5}_{-2.7}$	< 3.98	< 9.08	5588.0 ± 412.0	$7.77^{+3.22}_{-1.02}$
MRK1239	0.01993	2015	$24.4^{+22.0}_{-7.1}$	< 5.51	< 0.55	1043.0 ± 358.0	$0.51^{+0.5}_{-0.16}$
ESO374	0.02367	2011	$11.2^{+1.0}$	< 1.83	< 2.92	4481.0 ± 969.0	$4.31^{+0.27}_{-0.52}$
PG1149	0.049	2013	$17.3^{+6.2}$	< 1.4	< 5.36	3579.0 ± 700.0	$4.14^{+2.02}$
NGC4726	0.0245	2013	$16.6^{+0.7}$	< 3.01	< 3.24	3119.0 ± 0.0	$3.09^{+0.14}$
IC4329A	0.01605	2015	$22.7^{+0.8}$	< 7.09	< 6.31	4940.0 ± 274.0	$10.69^{+0.23}$
	5.51000	2010		1100	1 0.01	10 10.0 - 21 1.0	-0.2

 $3.2^{+10.8}_{-10.81}$ 16.60.38 $39.38^{+42.48}_{-16.01}$ $0.05^{+0.01}_{-0.01}$ $0.19_{-0.04}^{+0.04}$ -0.04 + 0.22 $0.66\substack{+0.22\\-0.2}$ $\begin{array}{c} 0.4^{+0.11}_{-0.11} \\ 1.84^{+0.21}_{-0.27} \end{array}$ 0.01 0.93^{-}_{-} $\begin{array}{c} 0.5^{+0.12}_{-0.11} \\ 23.1^{+28.54}_{-39.14} \end{array}$ -39.14 $\begin{array}{c} 0.06\substack{+0.02\\-0.02}\\ 0.04\substack{+0.01\\-0.01} \end{array}$ $0.12\substack{+0.03 \\ -0.03}$

Radius — Luminosity Relation

Main results

Diferent literature $H\alpha$ samples

- 14 High luminosity QSO (0.08 < z < 0.3): Kaspi'00
- 7 sources Nearby Seyferts (z ~0.01): Bentz'10
- 23 SDSS sources high redshifted (0.1 < z < 0.45): Shen'23, revised version from Grier'17
- 5 sources (redshifts 0.07 < z < 0.2) Seoul Cho'23
- New sources: 37 Seyferts (0.01 < z < 0.05)

28 single-epoch and 9 multi-epoch

Scatter:

- All H α studies = 0.32dex
- SDSS = 0.34dex, This work = 0.28dex
- Compite with big telescopes

Previous studies on broad emission lines:

- HB (~120 sources, Bentz+13, Du+16, MAI+19)
- MgII (~30-40 sources Czerny+19, Yu+22)
- CIV (~30-40 sources Lira+18, Kaspi+22)

Result: Add a total of 37 Sources in H α with scatter of 0.28dex

Radius — Luminosity Relation Multi-epoch observations

Different observations epochs

- Different lag/luminosity at different observing seasons
- Stable results for 6 objects with scatter < 0.07dex
- Comparing with the overall scatter (~0.3dex), single scatter does not affect much (~0.1dex)
- No intrinsic relation found:
 - 3 objects follow slope ~0.5
 - Other objects: random or stable
- Multi-epoch sample not large enough to lead to robust conclusions

- Objects tend to lie within a range of the relation, so that the overall r-L relation and its scatter is not only due to uncertainties in the BLR size or the luminosity

Radius — Luminosity Relation

$$\dot{\mathcal{M}} = 20.1 \left(\frac{l_{44}}{\cos(\theta)}\right)^{3/2} m_7^{-2}$$

Accretion rate dependence is biased by definition:

- More luminous objects move to the right hand, leading to be underneath the sample
- BH mass depends on time delay. If time delay is shorter, accretion rate is higher and high accreting objects stay underneath the sample
- Offset High accreting objects: μ ~ -0.14 with scatter of 0.30dex

Ongoing: evaluate independently the accretion rate

Radius - Luminosity Relation

- Add a total of 37 sources to the previous H $\!\alpha$ RM results
- Large scatter ~0.28dex, but smaller than previous SDSS results ~0.32dex
- Estimate dependence with dimensionless accretion rate
- Hlpha emission line helpful for investigating origin of the r-L scatter

$H\alpha$ emission line for cosmological purposes

- Advantages:
 - bright, prominent line
 - easier to observe in PRM with small telescopes and Narrow Bands
 - Upcoming LSST survey will observe Hlpha within Broad bands: z, y
 - Helpful to reduce scatter in the r-L relation
- Disadvantages:
 - Optical regime: H α possible observations up to redshift z~0.5-0.6,

where Hβ (z~1), MgII (z~2.5), CIV (z~5)

- Expected larger delays, needed longer observations

s <mark>S results</mark> ~0.32dex

- Narrow Bands bands: z, y
- shift z~0.5-0.6, 5)

Summary

- Small telescopes (~25cm): provide good data quality and good cadence to explore AGN and the r-L relation for H α
- Photometric Reverberation mapping technique helps to improve the AGN time delays found with spectroscopic techniques
- Present a new formalism, an easy method for determining timedelays in the PRM context which will help for upcoming surveys, such as LSST
- The exploration of the Flux-Flux diagrams to find Changing look candidates in new surveys
- H α emission line suitable for exploring the origin of the r-L scatter - Advantage: bright line, easier to observe in PRM with small telescopes and Narrow bands.
 - Helpful to check origin of the scatter in the r-L relation
 - Homogeneous sample
 - Disadvantage: optical observations up to redshift 0.5-0.6

1.20

1.15

Ăn<u>I</u> 1.10

0 1.05

ይ 1.00

<mark>≥</mark> 0.95

0.90

0.85

 10^{0}

1042

1043

1044

 $L_{5100}[erg/s]$

10⁴⁵

 10^{46}

Thank you!

Radius – Luminosity Relation

- Uncertainties: time delay determination and real BLR size, BH mass (unknown AGN geometry)
- Uncertainties: AGN luminosity (removing host component), extinction within AGN
- All produce uncertainties in Accretion rate

Backup

Light curve quality

Von Neumann
$$\hat{\sigma}_{vN}^2 = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (X_{i+1} - Variance s^2) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

Definition of $\eta = \sigma^2/s^2$

Confidence level

Randomly shift light curve data Probability to get this time delay and alpha for random data

22

Backup

Time delay determination: τ - α formalism: Simulations

Simulations:

- Test formalism with simulated light curves
- Compare results to widely used ICCF: ICCF start showing smaller delays for $\alpha < 0.6$
- Delay well recovered until a ~ 0.2 20% varying component
- Depending on sampling and noise: a well recovered until 0.3, then overestimated

Radius – Luminosity Relation

Scatter

- BLR size and AGN geometry: foreshortening effect (observe shorter delays) if the BLR clouds are located near the observer
- Material between AD and observer within AGN affects the AGN luminosity
- Multi-epoch lag-luminosity scatter: which is the 'stable' BLR size/luminosity?
- Changing Look AGN, affect the r-L calibration
- Accretion rate plays a role
- Another estimations for the accretion rate, like done for Hbeta with R_{Fe}
- Improve r-L calibration for Cosmology parameters

