Evolution of Disklike Structures in the Galactic Centre

Myank Singhal Ladislav Subr Jaroslav Haas

FACULTY OF MATHEMATICS AND PHYSICS Charles University

This work was funded by the Grant Agency of Charles University (179123)

- Observed structures in the Galactic Centre.
- Simulation of a disk of stars in the GC.
- Understanding the fundamental mechanism.

Observed disk-like structures

NASA, JPL-Caltech, Susan Stolovy (SSC/Caltech) et al

Young Stellar Disks

•Primarily OB type stars.

•Situated within distances of 0.04-0.4 pc.

Levin & Beloborodov (2003), Paumard et al.
(2006), Bartko et al.
(2009, 2010)

Paumard et al. (2006)

S-stars

•Young stars that closely orbit Sag A*.

•S2 orbit agrees with Schwarzschild geodesics.

•Their origin is currently not well understood.

•GRAVITY Collaboration. (2020), Do et al. (2009)

Dusty Objects

Seem to align with the disks formed with the S-stars.

Simulations of disk of stars

Evolution of a disk of stars Setup

- Central massive body ($M_{SMBH} = 4 \cdot 10^6 M_{\odot}$)

- 1 massive perturber on a circular orbit. ($M_p = 10^4 M_{\odot}, R_p = 0.1 pc$)
- Disk of 50 stars:
 - Salpeter mass distribution function $\xi(m) \propto m^{-2.35}$, $m \in [1,\!15)~{\rm M}_{\odot}$
 - $e \in [0,1)$
 - $a \in [0.0035, 0.02) \text{ pc}$
 - *i* ∈ [65°, 75°)
 - $\Omega = 0^{\circ}$
 - $\omega = 0^{\circ}$
 - $\nu \in [0,2\pi)$

Evolution of a disk of stars

3-body Hierarchical Setup

3-body Hierarchical Setup

- A binary system perturbed by a massive body.
- Angular momentum of inner binary is no longer conserved.

•
$$M_{SMBH} = 4 \cdot 10^6 M_{\odot}$$

 $M_p = 10^4 M_{\odot}$
 $R_p = 0.1pc$
 $M_{test} = 10M_{\odot}$
 $R_{test} = 2.2 \cdot 10^{-2}pc$

- The Kozai constant is conserved: $C \equiv \sqrt{1 e^2} \cos i$.
- $C = \sqrt{3/5} \approx 0.77$ sets the critical value.
- $C < \sqrt{3/5}$ results in a separatrix at e = 0.

 $M_{SMBH} = 4 \cdot 10^{6} M_{\odot}$ $M_{test} = 1 M_{\odot}$ $M_{p} = 10^{4} M_{\odot}$ $R_{p} = 0.1 pc$ $e_{ini} = 10^{-4}$

- Oscillations damped due to spherically symmetric external potential.
- External potential can be due to:
 - extended stellar cusp.
 - relativistic corrections to newtonian dynamics.
- $M_{SMBH} = 4 \cdot 10^6 M_{\odot}$ $M_{test} = 10 M_{\odot}$ $R_{test} = 1.5 \cdot 10^{-2} pc$ $M_p = 10^4 M_{\odot}$ $R_p = 0.1 pc$

With 1st-Order PN Corrections

 $M_{SMBH} = 4 \cdot 10^{6} M_{\odot}$ $M_{test} = 1 M_{\odot}$ $M_{p} = 10^{4} M_{\odot}$ $R_{p} = 0.1 pc$ $e_{ini} = 10^{-4}$

4-body Hierarchical Setup

4-body Hierarchical Setup

Haas, Šubr & Vokrouhlický (2011)

- Four-body system
 - Central massive body
 - 1 massive perturber on circular orbit.
 - 2 light bodies on circular orbits:
- Spherical external potential from stellar cusp to damp KL oscillations.

Haas, Šubr & Vokrouhlický (2011)

- Four body system
 - Central massive body ($M_{SMBH} = 3.5 \cdot 10^6 M_{\odot}$)
 - 1 massive perturber on circular orbit. ($M_{CND} = 0.3M_{SMBH}, R_{CND} = 1.5pc$)
 - 2 light bodies on circular orbits:
 - $a_1 = 0.04 R_{CND}, a_2 = 0.05 R_{CND}$

•
$$e_1 = e_2 = 0$$
, $i_1 = i_2 = 70^\circ$

	Strong Interaction	Weak Interaction
m_1	$9 \cdot 10^{-6} M_{SMBH}$	$5 \cdot 10^{-6} M_{SMBH}$
m_2	$9 \cdot 10^{-6} M_{SMBH}$	$5 \cdot 10^{-6} M_{SMBH}$

• Spherical external potential from stellar cusp to damp KL oscillations.

Haas, Šubr & Vokrouhlický (2011)

Code

- We use *ARWV*, a N-body integration code which calculates PN corrections upto 2.5 orders (Chassonnery et al. 2019).
- It uses the ARCHAIN algorithm developed by Mikkola and Merritt (2006, 2008) to calculate velocity dependent forces.

Setup

- Four-body system
 - Central massive body ($M_{SMBH} = 4 \cdot 10^6 M_{\odot}$)
 - 1 massive perturber on circular orbit. ($M_p = 10^4 M_{\odot}, R_p = 0.1 pc$)
 - 2 light bodies

Strong Interaction - Zero eccentricity

 $m = m' = 10 M_{\odot}$ $a = 0.0035 \ pc$ $a' = 0.0045 \ pc$ $i_{ini} = i'_{ini} = 70^{\circ}$ e = e' = 0

Strong Interaction - Zero eccentricity

 $m = m' = 10 M_{\odot}$ a = 0.0035 pca' = 0.0045 pc $i_{ini} = i'_{ini} = 70^{\circ}$

e = e' = 0

Strong Interaction - Zero eccentricity

 $m = m' = 10 M_{\odot}$ $a = 0.0035 \ pc$ $a' = 0.0045 \ pc$ $i_{ini} = i'_{ini} = 70^{\circ}$ e = e' = 0

Strong Interaction - Non-zero eccentricity

 $m = m' = 10 M_{\odot}$ $a = 0.0035 \ pc$ $a' = 0.0045 \ pc$ $i_{ini} = i'_{ini} = 70^{\circ}$ e = e' = 0.77

Strong Interaction - Non-zero eccentricity

 $m = m' = 10 \ M_{\odot}$ $a = 0.0035 \ pc$ $a' = 0.0045 \ pc$ $i_{ini} = i'_{ini} = 70^{\circ}$ e = e' = 0.77

Weak Interaction - Zero eccentricity

 $m = m' = 1 M_{\odot}$ a = 0.0035 pca' = 0.007 pc $i_{ini} = i'_{ini} = 70^{\circ}$ e = e' = 0

Weak Interaction - Zero eccentricity

 $m = m' = 1 M_{\odot}$ a = 0.0035 pca' = 0.007 pc $i_{ini} = i'_{ini} = 70^{\circ}$ e = e' = 0

Weak Interaction - Zero eccentricity

 $m = m' = 1 M_{\odot}$ a = 0.0035 pca' = 0.007 pc $i_{ini} = i'_{ini} = 70^{\circ}$ e = e' = 0

Weak Interaction - Non-zero eccentricity

 $m = m' = 1 M_{\odot}$ $a = 0.0035 \ pc$ $a' = 0.007 \ pc$ $i_{ini} = i'_{ini} = 70^{\circ}$ e = e' = 0.72

Weak Interaction - Non-zero eccentricity

 $m = m' = 1 M_{\odot}$ a = 0.0035 pca' = 0.007 pc $i_{ini} = i'_{ini} = 70^{\circ}$ e = e' = 0.72

With Kozai-Lidov oscillations

0.97 $m = m' = 10 M_{\odot}$ 0.91 -0.85 - $C = \sqrt{3/5}$ 0.79 $a = 0.0196 \ pc$ 0.73 -0.67 $a' = 0.0218 \ pc$ 0.61 -0.55 $i_{ini} = i'_{ini} = 70^{\circ}$ 0.49 -0.43 -0.37 e = e' = 0.01** 0.31 -0.25 -0.19 -0.13 -0.07 -0.01 $\begin{array}{c} 0.01\\ 0.04\\ 0.07\\ 0.13\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.25\\ 0.28\\ 0.28\\ 0.34\\ 0.37\\ 0.37\\ 0.49\\ 0.49\\ 0.49\end{array}$

0.8

0.6

-0.4

-0.2

 e_{\max}

With Kozai-Lidov oscillations

With Kozai-Lidov oscillations

Chaotic Evolution

0.97 $m = m' = 10 \ M_{\odot}$ 0.91 -0.85 - $C = \sqrt{3/5}$ 0.79 0.8 $a = 0.015 \ pc$ 0.73 -0.67 $a' = 0.0168 \ pc$ 0.61 --0.6 0.55 $i_{ini} = i'_{ini} = 70^{\circ}$ 0.49 0.43 --0.40.37 e = e' = 0.03XXX 0.31 -0.25 -0.20.19 -0.13 -0.07 -0.01

 e_{max}

Chaotic Evolution

 $m = m' = 10 \ M_{\odot}$ $a = 0.015 \ pc$ $a' = 0.0168 \ pc$ $i_{ini} = i'_{ini} = 70^{\circ}$ e = e' = 0.03

Chaotic Evolution

0.97 $m = m' = 10 \ M_{\odot}$ 0.91 -0.85 - $C = \sqrt{3/5}$ 0.79 0.8 $a = 0.0146 \ pc$ 0.73 -0.67 $a' = 0.0183 \ pc$ 0.61 --0.6 0.55 $i_{ini} = i'_{ini} = 70^{\circ}$ 0.49 0.43 --0.40.37 e = 0.110.31 -文 🛧 0.25 e' = 0.21-0.20.19 -0.13 -0.07 -0.01

 e_{\max}

Chaotic Evolution

 $m = m' = 10 \ M_{\odot}$ $a = 0.015 \ pc$ $a' = 0.0168 \ pc$ $i_{ini} = i'_{ini} = 70^{\circ}$ e = e' = 0.03

Evolution of a disk of stars

Summary

- The four body dynamics of VHS mechanism are applicable in relativistic regime.
- These dynamics are not only applicable in secular system with damped KL oscillations but
 - can exist in non-eccentric orbits with slight changes.
 - can co-exist with KL oscillations and bind the oscillation together in case of strong interaction.
- These relativistic corrections are applicable to stars in close orbit around Sagittarius A* and these dynamics could be present in that system.