M A S A R Y K U N I V E R S I T Y

Studying radio-mechanical AGN feedback with X-ray cavities

Tomáš Plšek¹, Norbert Werner¹

¹DTPA, Masaryk University, Brno, Czech Republic

GNC 2024, Szczecin

June 6th 2024

X-ray cavities

Correlation with Bondi

Extending the sample

AGN feedback

quasar mode

- geometrically thin disk
- optically thick
- radiatively efficient
 - \rightarrow EM radiation
- all galaxy types

radio-mechanical mode

- geometrically thick torus
- optically thin
- radiatively inefficient (ADAF)
 - ightarrow relativistic particles (jets)
- early-type galaxies

X-ray cavities

Correlation with Bondi

Extending the sample

AGN feedback

quasar mode

- geometrically thin disk
- optically thick
- radiatively efficient
 - \rightarrow EM radiation
- all galaxy types

radio-mechanical mode

- geometrically thick torus
- optically thin
- radiatively inefficient (ADAF)
 - ightarrow relativistic particles (jets)
- early-type galaxies

X-ray cavities

Correlation with Bondi

Extending the sample

- elliptical & lenticular galaxies
 - total mass $> 10^{12} M_{\odot}$
 - \rightarrow hot atmospheres

Correlation with Bondi

Extending the sample

- elliptical & lenticular galaxies
 - total mass $> 10^{12} M_{\odot}$
 - ightarrow hot atmospheres
- hot & diffuse plasma
 - $n \approx 10^{-5} 1 \text{ cm}^{-3}$
 - $T pprox 10^6 10^8$ K

Correlation with Bondi

Extending the sample

- elliptical & lenticular galaxies
 - total mass $> 10^{12} M_{\odot}$
 - ightarrow hot atmospheres
- hot & diffuse plasma
 - $n \approx 10^{-5} 1 \text{ cm}^{-3}$
 - $T pprox 10^6 10^8 \ {
 m K}$
- $\bullet \ hot \to emit \ X\text{-rays}$

Correlation with Bondi

Extending the sample

- elliptical & lenticular galaxies
 - total mass $> 10^{12} M_{\odot}$
 - ightarrow hot atmospheres
- hot & diffuse plasma
 - $n \approx 10^{-5} 1 \text{ cm}^{-3}$
 - $T pprox 10^6 10^8 \ \mathrm{K}$
- $\bullet \ hot \to emit \ X\text{-rays}$
 - optically thin
 - ightarrow cool radiatively ($t_{
 m cool}$)
 - ightarrow cold gas (Hlpha+[NII], CO)

X-ray cavities

Correlation with Bondi

Extending the sample

X-ray cavities

Correlation with Bondi

Extending the sample

X-ray cavities

Correlation with Bondi

Extending the sample

Correlation with Bondi

Extending the sample

- $\bullet \ \ \text{relativistic jets} \rightarrow \text{radio lobes}$
 - interact with hot gas
 - inflate X-ray cavities

Correlation with Bondi

Extending the sample

- relativistic jets \rightarrow radio lobes
 - interact with hot gas
 - inflate X-ray cavities

Correlation with Bondi

Extending the sample

- $\bullet \ \ \text{relativistic jets} \rightarrow \text{radio lobes}$
 - interact with hot gas
 - inflate X-ray cavities

Correlation with Bondi

Extending the sample

- $\bullet \ \ \text{relativistic jets} \rightarrow \text{radio lobes}$
 - interact with hot gas
 - inflate X-ray cavities
- for older no radio counterpart
 - = ghost cavities

Correlation with Bondi

Extending the sample

- $\bullet \ \ \text{relativistic jets} \to \text{radio lobes}$
 - interact with hot gas
 - inflate X-ray cavities
- for older no radio counterpart
 ghost cavities
- deposits *E* on kpc–Mpc scale
 - turbulent flows, bulk motions
 - sound and shock waves

Correlation with Bondi

Extending the sample

- $\bullet \ \ \text{relativistic jets} \rightarrow \text{radio lobes}$
 - interact with hot gas
 - inflate X-ray cavities
- for older no radio counterpart
 = ghost cavities
- deposits *E* on kpc–Mpc scale
 - turbulent flows, bulk motions
 - sound and shock waves
- heats the galactic atmosphere
 - prevents star formation
 - regulates further accretion

X-ray cavities

Correlation with Bondi

Extending the sample

Correlation with Bondi

Extending the sample

Correlation with Bondi

Extending the sample

$$(falls to SMBH) \rightarrow (active jets)$$

Correlation with Bondi

Extending the sample

$$(active jets) \rightarrow (active jets)$$

Correlation with Bondi

Extending the sample

$$(gas cools) (falls to SMBH) \rightarrow (active jets) (heated gas)$$

Correlation with Bondi

Extending the sample

Correlation with Bondi

Extending the sample

Radio-mechanical AGN feedback loop

hot atmosphere central engine 10^{46} 10^{42} $\log(P_{\rm Bondi}/10^{43} {\rm erg}^{-1})$ 1044 Cavity power (erg s⁻¹) epidemonth of the second s 10⁴ . 4 nV 10^{40} 16 pV . 10³⁹ -10 1 104 1042 1043 1044 $\log(P_{jet}/10^{43} erg s^{-1})$ Cooling luminosity (erg s⁻¹)

Credit: Panagoulia et al. 2014

Credit: Allen et al. 2006

X-ray cavities

Correlation with Bondi

Extending the sample

Studying AGN feedback with X-ray cavities

Credit: Randall et al. 2015

X-ray cavities

Correlation with Bondi

Extending the sample

Studying AGN feedback with X-ray cavities

Credit: Randall et al. 2015

Correlation with Bondi

Extending the sample

Studying AGN feedback with X-ray cavities

Correlation with Bondi

Extending the sample

Studying AGN feedback with X-ray cavities

X-ray cavities ○●○○ Correlation with Bondi

Extending the sample

Broad range of jet powers

galaxies/groups	brightest cluster galaxies	galaxy clusters
$Rpprox1{ m kpc}$	Rpprox 10 kpc	Rpprox 100 kpc
$Epprox10^{56}$ erg	$Epprox10^{59}$ erg	$Epprox10^{62}$ erg
$P_{\rm jet} = 10^{41} - 10^{43} \; {\rm erg/s}$	$P_{\rm jet} = 10^{43} - 10^{45} \; {\rm erg/s}$	$P_{\rm jet} = 10^{45} - 10^{46} \; {\rm erg/s}$

X-ray cavities

 $\underset{000}{\text{Correlation with Bondi}}$

Extending the sample

X-ray cavities

 $\underset{000}{\text{Correlation with Bondi}}$

Extending the sample

X-ray cavities

 $\underset{000}{\text{Correlation with Bondi}}$

Extending the sample

X-ray cavities

 $\underset{000}{\text{Correlation with Bondi}}$

Extending the sample

X-ray cavities

 $\underset{000}{\text{Correlation with Bondi}}$

Extending the sample

X-ray cavities

 $\underset{000}{\text{Correlation with Bondi}}$

Extending the sample

Correlation with Bondi

Extending the sample

Cavity Detection Tool (CADET)

- mock training data
 - 3D β -models
 - ellipsoidal cavities (50%)
 - 500k training images

github.com/tomasplsek/CADET

Plšek et al. 2024 (doi.org/10.1093/mnras/stad3371)

8/14

Cavity Detection Tool (CADET)

- mock training data
 - 3D β -models
 - ellipsoidal cavities (50%)
 - 500k training images
- convolutional neural network \rightarrow image segmentation

github.com/tomasplsek/CADET

X-ray cavities 000

Correlation with Bondi

Correlation with Bondi

Extending the sample

Correlation with Bondi accretion power

? $P_{\rm jet} \propto P_{\rm B}$

Galaxy	Alternative name	D (Mpc)	r _B (pc)	r _B (")
IC 4296	Abell 3565	49.0	70.0	0.29
NGC 1399	Fornax c.	21.1	38.0	0.24
NGC 1407		25.1	164.0	1.3
NGC 1600		63.7	539.0	1.7
NGC 4261		32.4	81.0	0.52
NGC 4472	M49	16.5	106.0	1.3
NGC 4486	M87	16.5	208.0	2.6
NGC 4636		14.7	35.0	0.49
NGC 4649	M60	16.5	122.0	1.5
NGC 5813		32.2	40.0	0.26
NGC 5846		24.9	48.0	0.35
NGC 507		64.6	86.0	0.28
NGC 708	Abell 262	62.8	17.0	0.056
NGC 1316	Fornax A	22.7	8.0	0.077
NGC 4374	M84	16.5	62.0	0.77
NGC 4552	M89	16.5	14.0	0.18
NGC 4696	Centaurus c.	42.5	36.0	0.17
NGC 4778	HCG 62	66.2	39.0	0.12
NGC 5044		32.2	10.0	0.065
NGC 6166	Abell 2199	125.0	63.0	0.1

 $\begin{array}{c} \textbf{Correlation with Bondi} \\ \bullet \circ \circ \end{array}$

Extending the sample

Correlation with Bondi accretion power

Bondi accretion

$$r_{\rm B} = \frac{G M_{\bullet}}{c_{\rm s}^2}$$

$$\dot{m}_{\rm B} = \pi \rho c_{\rm s} r_{\rm B}^2$$

$$P_{\rm B} \approx 0.1 \, \dot{m}_{\rm B} \, c^2$$

Galaxy	Alternative name	D (Mpc)	r _B (pc)	$\binom{r_{\rm B}}{('')}$
IC 4296	Abell 3565	49.0	70.0	0.29
NGC 1399	Fornax c.	21.1	38.0	0.24
NGC 1407		25.1	164.0	1.3
NGC 1600		63.7	539.0	1.7
NGC 4261		32.4	81.0	0.52
NGC 4472	M49	16.5	106.0	1.3
NGC 4486	M87	16.5	208.0	2.6
NGC 4636		14.7	35.0	0.49
NGC 4649	M60	16.5	122.0	1.5
NGC 5813		32.2	40.0	0.26
NGC 5846		24.9	48.0	0.35
NGC 507		64.6	86.0	0.28
NGC 708	Abell 262	62.8	17.0	0.056
NGC 1316	Fornax A	22.7	8.0	0.077
NGC 4374	M84	16.5	62.0	0.77
NGC 4552	M89	16.5	14.0	0.18
NGC 4696	Centaurus c.	42.5	36.0	0.17
NGC 4778	HCG 62	66.2	39.0	0.12
NGC 5044		32.2	10.0	0.065
NGC 6166	Abell 2199	125.0	63.0	0.1

 $\begin{array}{c} \textbf{Correlation with Bondi} \\ \bullet \circ \circ \end{array}$

Extending the sample

Correlation with Bondi accretion power

Bondi accretion

$$r_{\rm B} = \frac{G M_{\bullet}}{c_{\rm s}^2}$$

$$\dot{m}_{\rm B} = \pi \rho c_{\rm s} r_{\rm B}^2$$

$$P_{\rm B} \approx 0.1 \, \dot{m}_{\rm B} \, c^2$$

$\textit{Chandra}\approx 0.5~\text{arcsec}$

Galaxy	Alternative name	D (Mpc)	^r в (рс)	r _B (")
IC 4296	Abell 3565	49.0	70.0	0.29
NGC 1399	Fornax c.	21.1	38.0	0.24
NGC 1407		25.1	164.0	1.3
NGC 1600		63.7	539.0	1.7
NGC 4261		32.4	81.0	0.52
NGC 4472	M49	16.5	106.0	1.3
NGC 4486	M87	16.5	208.0	2.6
NGC 4636		14.7	35.0	0.49
NGC 4649	M60	16.5	122.0	1.5
NGC 5813		32.2	40.0	0.26
NGC 5846		24.9	48.0	0.35
NGC 507		64.6	86.0	0.28
NGC 708	Abell 262	62.8	17.0	0.056
NGC 1316	Fornax A	22.7	8.0	0.077
NGC 4374	M84	16.5	62.0	0.77
NGC 4552	M89	16.5	14.0	0.18
NGC 4696	Centaurus c.	42.5	36.0	0.17
NGC 4778	HCG 62	66.2	39.0	0.12
NGC 5044		32.2	10.0	0.065
NGC 6166	Abell 2199	125.0	63.0	0.1

Correlation with Bondi

Extending the sample

Correlation with Bondi accretion power

Plšek et al. 2022 (doi.org/10.1093/mnras/stac2770)

Correlation with Bondi

Extending the sample

Correlation with Bondi accretion power

 $P_{\rm B} \propto P_{\rm iet}^{1.1\pm0.2}$ $P_{\rm jet} \approx 0.01 \, \dot{m}_{\rm B} c^2$

Plšek et al. 2022 (doi.org/10.1093/mnras/stac2770)

Correlation with Bondi

Extending the sample

Underlying dependence on SMBH mass

Plšek et al. 2022 (doi.org/10.1093/mnras/stac2770)

Correlation with Bondi

Extending the sample

Lack of balance between heating and cooling?

Correlation with Bondi

Extending the sample

Lack of balance between heating and cooling?

Correlation with Bondi

Extending the sample

Extending the sample

- archival Chandra data
- objects with known cavities
 - no strict selection criteria
 - not a duty cycle study
- planned:
 - 100 early-type galaxies
 - + 60 galaxy clusters
- currently analyzed: \approx 50 early-type galaxies
 - ightarrow 80 X-ray cavities (CADET)
 - + thermodynamic profiles

Correlation with Bondi

Extending the sample $\circ \bullet \circ$

Preliminary results

 $\underset{000}{\text{Correlation with Bondi}}$

Extending the sample $_{\bigcirc \Theta \bigcirc }$

Preliminary results

Correlation with Bondi

Extending the sample $_{\bigcirc \odot \odot \bigcirc \bigcirc }$

Preliminary results

Correlation with Bondi

Extending the sample $\circ \bullet \circ$

Preliminary results

projection effects?

Correlation with Bondi

Extending the sample $\circ \circ \bullet$

Future work

- enlarge the sample (\gtrsim 160 sources)
 - suggestions or cavity candidates?
- probe other properties
 - kT, M_{500} , L_X , K, thermal state of atmosphere (H α)
 - L_{AGN}, galaxy morphology?
- large X-ray cavity sample statistics
 - general characteristics
 - cavity flattening, positional/rotational angles
 - jet precession (on big timescales)?