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Motivation

▶ The variability in blazars’ light curves and power spectral densities have
been studied extensively over the years in all energy bands.

▶ A wide range of methods and stochastic models were applied with the
intention of improving the understanding of their variability.

▶ Methods used for differentiating flaring and quiescent states in blazar
light curves are often arbitrary.

A more systematic approach is needed for uniformity among achieved results,
e.g., modeling blazars’ spectral energy distribution (SED), which can lead to
constraining the physical mechanism governing the observed variability, in

particular, the powerful flares.
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Figure 1: Unified model of AGN adapted from Urry and Padovani (1995). Created using
LATEX (PGFplots/TikZ).



Blazars

▶ Blazars are a unique class of active galactic nuclei (AGNs) hosting
relativistic jets that point almost directly at the observer.

▶ They are observed in the whole electromagnetic spectrum, from radio
waves to very high energy gamma-ray photons.

▶ They are known to be highly variable sources in all energy bands,
particularly in gamma rays, in which they exhibit powerful flares.



Fermi

Figure 2: Fermi Gamma-ray Space Telescope, formerly
Gamma-ray Large Area Space Telescope (GLAST). Credits:

NASA (https://science.nasa.gov/get-involved/
toolkits/spacecraft-icons).

▶ Fermi was launched
June 11, 2008.

▶ Fermi carries two
instruments:
▶ the Large Area

Telescope (LAT),
▶ the Gamma-ray Burst

Monitor (GBM).

▶ Fermi LAT has a large
FoV, over 2 steradians
(1/5 of the entire sky).

▶ It covers the entire sky
every three hours.

▶ The telescope operates
in the photon energy
range of 8 keV to
∼300 GeV.

https://science.nasa.gov/get-involved/toolkits/spacecraft-icons
https://science.nasa.gov/get-involved/toolkits/spacecraft-icons


Gamma-ray emission from blazars

0

5
bin =  14 d
×10 6 3C 279

0

10

20
bin =  14 d
×10 6 3C 454.3

0

1

2 bin =  14 d
×10 6 4C +01.02

0 1000 2000 3000 4000 5000
time (MJD t0)

0

5

10

flu
x 

(p
h 

cm
2  s

1 )

bin =  14 d
×10 6 CTA 102

Figure 3: Examples of gamma-ray light curves of blazars.



Data Sample

Forty-one blazars, some of the brightest from the 4FGL-DR4 catalog and the
ones extensively discussed in the literature, were selected. The selected
sources were divided into three groups

▶ the Gold Sample for at least 60% of data points having TS > 25 for all
of the three bin sizes, counting 22 sources;

▶ the Silver Sample for at least 50% of data points having TS > 25 for at
least one of the three bin sizes, counting 15 sources;

▶ the Brown Sample for at least 50% of data points having TS > 25 for
all of the three bin sizes but with less than half of the original time
range covered, counting 4 sources.
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Figure 4: Credits: Wang et al. (2020).



Autocorrelation function

▶ The non-parametric autocorrelation function (ACF) gives the correlation
between a series and time-lagged values of itself over its entire length.

▶ For an evenly-spaced time series x :

ACF (k) =
E [(xt − µ)(xt−k − µ)]

σ2
, (1)

where µ is mean value and σ is standard deviation.

▶ In realistic cases, the population mean and standard deviation are
unknown and must be estimated from the data.

▶ When the ACF shows significant signals, current values of the time
series depend on past values. The time series violates the assumption of
”independence” and many standard statistical procedures can not be
accurately applied. This is the situation where autoregressive modelling
can be effective.



Autoregressive modelling

AR
An autoregressive (AR) process has coefficients
that quantify the dependence of current values
on recent past values:

xt = φ1xt−1+φ2xt−2+ · · ·+φpxt−p +εt , (2)

where εt is a normally distributed random error
with zero mean and constant variance, p is the
order of the process, and φi are the
corresponding coefficients for each lag.

MA
A moving average (MA) process has coefficients
that quantify the dependence of current values
on recent past random shocks to the system:

xt = ϵt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q , (3)

where εt is the error term for the t-th time
point, q is the order of the process, and θi are
the coefficients for each lagged error term.

ARMA
Adding the two equations together gives a combined ARMA(p,q) process:

xt = c +

p∑
k=1

φkxt−k +

q∑
l=1

θlεt−l + εt , (4)

where c is a constant. Coefficients are estimated by standard regression procedures such as
maximum likelihood estimation.



MIARMA

▶ MIARMA is the gap-filling algorithm based on ARMA models written in
MATLAB (Pascual-Granado, Garrido, et al., 2015; Pascual-Granado,
Suárez, et al., 2018).

▶ MIARMA uses a forward-backward predictor based on autoregressive
moving-average modeling (ARMA) in the time domain.

▶ The algorithm is particularly suitable for replacing invalid data such as
those present in the light curves of space satellites (e.g. CoRoT, Kepler,
TESS, PLATO, etc.) caused by instrumental effects, transit removal, or
the impact of charged particles.
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of the model. The second term penalizes the number of free pa-
rameters used by the model. According to Akaike’s theory, the
optimal ARMA model is the one with the lowest AIC value. The
Akaike criterion derives from purely physical considerations, in-
deed, it was called originally the principle of maximum entropy.
Therefore, this criterion is objectively self-consistent because it
guarantees that the model found is the best approximation to the
physical process observed using the available information.

The procedure used here for selecting the order iterates
from a set of models with different orders (p, q) and selects
the one with the lowest AIC value. In this way, the optimal
ARMA model for the data segment is always guaranteed regard-
less of the range of the orders (p, q) explored. Note that to ob-
tain a robust estimation of the order (i.e. valid for the entire time
series), the longest uninterrupted data segment is selected to cal-
culate the AIC coefficients.

3.2.2. Gap-filling

After the orders are selected using AIC, an ARMA model is lo-
cally fitted to the data segment located before and after every
gap. To do this, the coefficients ak and bk in Eq. (4) have to be
determined for each data segment. For an AR model the param-
eters can be determined using minimum least squares, the mo-
ment method, or MCMC methods, but for an ARMA model, it is
necessary to use an iterative procedure to obtain the coefficients
of the MA part. MIARMA calculates the coefficients using an it-
erative algorithm that minimizes the sum of the quadratic errors
by checking the convergence after a number of iterations.

The ARMA interpolation in the gaps is based on the
following equations:

xn = xf
nw

f
n + xb

nw
b
n

wf
n = 1 − wb

n = w.k, k ∈ (1, lg)

w =
1

1 + lg
, (6)

where xf
n and xb

n are forward and backward predictions inside the
gaps, wf

n and wb
n are the weights normalizing those predictions,

and lg is the length of the gap.
Commonly used algorithms for fitting ARMA models are in-

sensitive to the arrow of time, that is, they cannot make backward
predictions. We solve this problem by mirroring the data seg-
ment after the gap, performing a forward prediction and subse-
quently mirroring the result again. Although Roques et al. (2000)
used a backward prediction, as far as we know, our technique is
a novel solution in the field.

The whole gap-filling algorithm here described is carried out
through each gap contained in the time series analysed, and the
procedure is iterated until no gap is left or a predefined limit is
reached.

Predictions lose coherence rapidly when the gaps are much
larger than the data segments modelled. In this way, the method
is self-consistent because it can decide whether a prediction is no
longer feasible from attending the coherence loss. Unlike com-
mon gap-filling techniques, which are based on analytic methods
assuming that the pattern modelled in the data segments is sta-
ble and repeats until infinite, the method introduced here takes
into account the natural prediction limits. It is possible to decide
when a given prediction is unreliable (e.g. a possible result when
applying this algorithm is that no interpolation is reliable). That
is, in contrast to analytic methods, this algorithm guarantees that
the predictions are reliable. In this sense, MIARMA is optimised
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Fig. 2. Example of comparison between ARMA gap-filling (red) and the
linear interpolation (blue) for two gaps in the light curve of the δ Scuti
star HD 174966 observed by CoRoT.

to preserve the frequency content of the time series, meaning
that it guarantees that the conditions for Parseval’s theorem to be
valid are fulfilled.

This algorithm is particularly suited to process time series
such as those observed by CoRoT, with gaps smaller than the
data segments between them. Sometimes it might occur that a
data segment modelled is small and the large-scale information
of the signal is loss, but in this case, only a much smaller gap
can be filled, where the large-scale components of the signal are
not relevant. As far as we know, this would be the first time that
a gap-filling algorithm presents this self-consistent property.

4. Results: CoRoT data

The pass through the SAA introduces most of the invalid
data (gaps) that are present in CoRoT observations (Auvergne
et al. 2009). As described in Samadi et al. (2007), two sets are
available in CoRoT level 2 data: the gapped data, and a regularly
sampled dataset obtained by using linear interpolation to patch
the invalid data.

As an example, Fig. 1 shows the periodogram of the CoRoT
level 2 data for the star HD 172189. Note that when interpolating
linearly the gaps the spurious peaks due to the spectral window
appears clearly, but they are almost removed when MIARMA is
used.

Here we compare the regularly sampled light curves ob-
tained by using MIARMA with the original CoRoT level 2
data (linearly interpolated) in three cases of stars showing differ-
ent pulsational characteristics: the δ Scuti HD 174966, showing
periodic variations of the same order as the CoRoT observational
window, the Be star HD 51193, showing longer time-variations,
and the solar-like HD 49933, with rapid time variations. The
data we use in the next sections were all gathered by the ultra-
high precision CCD cameras on board the CoRoT satellite with
the primary objective of studying stellar pulsations (seismofield
camera).

4.1. HD 174966

The case of A-F main-sequence stars is particularly critical be-
cause they show pulsation frequencies close to the orbital fre-
quency of the satellite. In particular, the δ Scuti star HD 174966
might be considered as a prototype for investigating the impact
in this type of variable stars.

For this star it is clear that the linear interpolation does
not preserve the signal (see Fig. 2), in contrast to the ARMA
interpolation.
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Figure 5: Comparison between ARMA gap-filling (red) and the linear interpolation (blue) for two
gaps in the light curve of a δ Scuti star. Source: Pascual-Granado, Garrido, et al. (2015).



Threshold models

The basic family of ARMA models gives birth to many generalisations. One
such generalisation accounts for regime-switching behaviour:

Xt = X
(1)
t It−d + X

(2)
t (1− It−d) (5)

i.e., when the dynamics of the process Xt change from X
(1)
t to X

(2)
t , being

two different ARMA processes, once the time series values cross a threshold
r which is a free parameter to be determined by fitting to data. It−d is an
indicator function which delay d , i.e. equal to 1 if Xt−d ≥ r , and 0 if
Xt−d < r .
Such models constitute a promising opportunity as they can provide means
to distinguish quiescent states from flares in blazar light curves.



SETAR
▶ The self-exciting threshold autoregressive (SETAR) model, first

presented by Tong (1983), can be considered as a direct generalization,
in the non-linear domain, of the ARMA model (Box and Jenkins, 1976).

A SETAR model is defined as:

Xt =

ϕ
(1)
0 +

mL∑
j=1

ϕ
(1)
j Xt−j

 I (zt ⩽ th)

+

(
ϕ
(2)
0 +

mH∑
k=1

ϕ
(2)
k Xt−k

)
I (zt > th) + εt ,

where mL and mH are lower and higher orders of the model, I is an indicator
function, and zt is the threshold variable. An indicator function is equal to 1
if the threshold variable fulfills a set condition and is equal to 0 otherwise.
The autoregressive expression correlates the current value of the series with a
finite number of previous values.



Information Criteria

Best fit parameters for AMRA-type coefficients are typically calculated with
maximum likelihood estimation for different values of p, d and q, called the
order of the model. The optimal order is then selected to optimize the
Information Criteria (e.g., AIC, BIC), a penalized maximum likelihood
measure that balances improvements in likelihood with increases in model
complexity.



Information Criteria

AIC

Akaike’s Information Criteria:

AIC = −2 ln(L) + 2k, (6)

where L is the value of the likelihood
and k is the number of estimated
parameters.

BIC

Bayesian Information Criteria:

BIC = −2 ln(L) + 2 ln(N)k , (7)

where N is the number of recorded
measurements.

▶ AIC and BIC reward goodness of fit (as assessed by the likelihood
function), but they also include a penalty that is an increasing function
of the number of estimated parameters. The penalty discourages
overfitting, which is desired because increasing the number of
parameters in the model almost always improves the goodness of the fit.

▶ The difference between the BIC and the AIC is the greater penalty
imposed for the number of parameters by the former than the latter.
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Figure 6: Example of light curves from the Fermi Gamma-ray Space Telescope. Red points indicate
gaps interpolated with MIARMA.

Note. The upper panel shows the calculated threshold using the AIC and BIC separately.
The lower panel presents the mean threshold value.



Spectral indices
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Figure 7: Distribution of spectral index values depending on the corresponding flux being above or
below the mean threshold estimate for the Gold Sample.



Flares duration
To determine flare duration, the time profile of a single flare (Abdo et al.,
2010) was used in the following form

F (t) = Fc + F0

(
exp

(
t0 − t

Tr

)
+ exp

(
t − t0
Td

))−1

, (8)

where Fc is the value of an assumed constant baseline underlying a flare, F0
is the amplitude of a flare, t0 represents the approximate time of the flare’s
peak, Tr measures the rise time, and Td is the decay time. Then, the total
duration of a flare can be estimated

Tfl ≈ 2(Tr + Td). (9)

The observed flare time duration was transformed to a rest frame of
reference using the relation

T rest
fl =

Tfl

1 + z
. (10)
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Figure 8: The distribution of flares duration times.



AGNs physical parameters

The variability characteristics were linked to the physical properties of AGNs
adapted from Chen et al. (2023)

▶ the redshift z

▶ the black hole mass M

▶ the disc luminosity Ldisc in units of erg s−1

▶ the observed gamma-ray luminosity Lγ in units of erg s−1

▶ the 1.4 GHz radio flux f1.4GHz in units of Jy

▶ the jet kinetic power Pjet in units of erg s−1

▶ the synchrotron peak frequency νsypk
▶ the Compton dominance CD

▶ the curvature bsy
▶ the synchrotron peak frequency luminosity Lsypk

Definite correlations were found.
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Figure 9: Correlations between the calculated threshold and other parameters taken from Chen
et al. (2023).
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Figure 10: Correlations between the determined flares duration and other parameters taken from
Chen et al. (2023) with outliers removed.



Next step: spectral energy distribution modeling

Figure 11: The broadband SED modeling results from Sahakyan et al. (2024).



Conclusions

▶ The SETAR model provides more objective and robust results in
identifying flares in blazars’ light curves than the often-used arbitrary
methods.

▶ Locating flaring states is of importance when it comes to modeling the
physical properties of blazars as it can provide valuable information on
physical processes governing the variability, especially the activity during
flares.

▶ Progress in the understanding of blazar variability may come from the
study of a much larger sample of objects, focusing not only on the light
curves but also a more detailed SED analysis, preferably the whole
selection from the Fermi-LAT catalog, for a broader population analysis.
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