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Motivation

» The variability in blazars' light curves and power spectral densities have
been studied extensively over the years in all energy bands.

» A wide range of methods and stochastic models were applied with the
intention of improving the understanding of their variability.

» Methods used for differentiating flaring and quiescent states in blazar
light curves are often arbitrary.

A more systematic approach is needed for uniformity among achieved results,
e.g., modeling blazars' spectral energy distribution (SED), which can lead to
constraining the physical mechanism governing the observed variability, in
particular, the powerful flares.
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Figure 1: Unified model of AGN adapted from Urry and Padovani (1995). Created using
IATEX (PGFplots/TikZ).



Blazars

» Blazars are a unique class of active galactic nuclei (AGNs) hosting
relativistic jets that point almost directly at the observer.

» They are observed in the whole electromagnetic spectrum, from radio
waves to very high energy gamma-ray photons.

» They are known to be highly variable sources in all energy bands,
particularly in gamma rays, in which they exhibit powerful flares.
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Figure 2: Fermi Gamma-ray Space Telescope, formerly
Gamma-ray Large Area Space Telescope (GLAST). Credits:
NASA (https://science.nasa.gov/get-involved/

toolkits/spacecraft-icons).

Fermi was launched
June 11, 2008.
Fermi carries two
Instruments:
> the Large Area
Telescope (LAT),
» the Gamma-ray Burst
Monitor (GBM).
Fermi LAT has a large
FoV, over 2 steradians
(1/5 of the entire sky).

It covers the entire sky
every three hours.

The telescope operates
in the photon energy
range of 8 keV to
~300 GeV.


https://science.nasa.gov/get-involved/toolkits/spacecraft-icons
https://science.nasa.gov/get-involved/toolkits/spacecraft-icons

Gamma-ray emission from blazars
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Data Sample

Forty-one blazars, some of the brightest from the 4FGL-DR4 catalog and the
ones extensively discussed in the literature, were selected. The selected
sources were divided into three groups

» the Gold Sample for at least 60% of data points having TS > 25 for all
of the three bin sizes, counting 22 sources;

» the Silver Sample for at least 50% of data points having TS > 25 for at
least one of the three bin sizes, counting 15 sources;

» the Brown Sample for at least 50% of data points having T'S > 25 for
all of the three bin sizes but with less than half of the original time
range covered, counting 4 sources.




Quiescent and flaring states
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Figure 4: Credits: Wang et al. (2020).
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Autocorrelation function

>

>

The non-parametric autocorrelation function (ACF) gives the correlation
between a series and time-lagged values of itself over its entire length.

For an evenly-spaced time series x:

ACF(k) — E[(Xf - :U')(thk - ,LL)] (1)

o? ’
where 1 is mean value and o is standard deviation.

In realistic cases, the population mean and standard deviation are
unknown and must be estimated from the data.

When the ACF shows significant signals, current values of the time
series depend on past values. The time series violates the assumption of
"independence” and many standard statistical procedures can not be
accurately applied. This is the situation where autoregressive modelling
can be effective.



Autoregressive modelling
AR

An autoregressive (AR) process has coefficients
that quantify the dependence of current values
on recent past values:

Xt = Q1X¢e—1+PoXe—2+ - -+ pXet—p+et, (2)

where €; is a normally distributed random error
with zero mean and constant variance, p is the
order of the process, and ¢; are the
corresponding coefficients for each lag.

MA

A moving average (MA) process has coefficients
that quantify the dependence of current values
on recent past random shocks to the system:

Xt = €t +016¢—1 + boer—o + -+ -+ Oget—q, (3)
where ¢; is the error term for the t-th time

point, g is the order of the process, and 6; are
the coefficients for each lagged error term.

ARMA

Adding the two equations together gives a combined ARMA(p,q) process:

p q
Xt:C+Z(PkXt7k+Zolstfl+5tv (4)

k=1

=1

where c is a constant. Coefficients are estimated by standard regression procedures such as

maximum likelihood estimation.




MIARMA

» MIARMA is the gap-filling algorithm based on ARMA models written in
MATLAB (Pascual-Granado, Garrido, et al., 2015; Pascual-Granado,
Sudrez, et al., 2018).

» MIARMA uses a forward-backward predictor based on autoregressive
moving-average modeling (ARMA) in the time domain.

» The algorithm is particularly suitable for replacing invalid data such as
those present in the light curves of space satellites (e.g. CoRoT, Kepler,
TESS, PLATO, etc.) caused by instrumental effects, transit removal, or
the impact of charged particles.
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Figure 5: Comparison between ARMA gap-filling (red) and the linear interpolation (blue) for two
gaps in the light curve of a § Scuti star. Source: Pascual-Granado, Garrido, et al. (2015).



Threshold models

The basic family of ARMA models gives birth to many generalisations. One
such generalisation accounts for regime-switching behaviour:

Xe = XWh_ g+ X2 - I,_y) (5)

i.e., when the dynamics of the process X; change from Xt(l) to Xt(z), being
two different ARMA processes, once the time series values cross a threshold
r which is a free parameter to be determined by fitting to data. /;_4 is an
indicator function which delay d, i.e. equal to 1 if X;_g > r, and 0 if

Xi_g <r.

Such models constitute a promising opportunity as they can provide means
to distinguish quiescent states from flares in blazar light curves.



SETAR

» The self-exciting threshold autoregressive (SETAR) model, first
presented by Tong (1983), can be considered as a direct generalization,
in the non-linear domain, of the ARMA model (Box and Jenkins, 1976).

A SETAR model is defined as:

m
Xe= 68"+ 3" oVXe ;| 1(z: < th)
j=1

my
T <¢g2) —+ Z¢S<2)Xt_k> /(Zt > th) —+ Et,

k=1

where m; and my are lower and higher orders of the model, / is an indicator
function, and z; is the threshold variable. An indicator function is equal to 1
if the threshold variable fulfills a set condition and is equal to 0 otherwise.
The autoregressive expression correlates the current value of the series with a
finite number of previous values.



Information Criteria

Best fit parameters for AMRA-type coefficients are typically calculated with
maximum likelihood estimation for different values of p, d and q, called the
order of the model. The optimal order is then selected to optimize the
Information Criteria (e.g., AIC, BIC), a penalized maximum likelihood
measure that balances improvements in likelihood with increases in model

complexity.



Information Criteria

AIC

| BIC

Akaike's Information Criteria: Bayesian Information Criteria:

AIC = —2In(L) + 2k,  (6) BIC = —2In(L) +2In(N)k, (7)

where L is the value of the likelihood | where N is the number of recorded

and k is the number of estimated measurements.
parameters.
» AIC and BIC reward goodness of fit (as assessed by the likelihood

function), but they also include a penalty that is an increasing function
of the number of estimated parameters. The penalty discourages
overfitting, which is desired because increasing the number of
parameters in the model almost always improves the goodness of the fit.

The difference between the BIC and the AIC is the greater penalty
imposed for the number of parameters by the former than the latter.



Quiescent vs flaring states
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Figure 6: Example of light curves from the Fermi Gamma-ray Space Telescope. Red points indicate
gaps interpolated with MIARMA.



Spectral indices
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Figure 7: Distribution of spectral index values depending on the corresponding flux being above or
below the mean threshold estimate for the Gold Sample.



Flares duration

To determine flare duration, the time profile of a single flare (Abdo et al.,
2010) was used in the following form

F(t) = F. + Fo <exp (t"T_r t) + exp <t ;dt"))l, (8) ’

where F. is the value of an assumed constant baseline underlying a flare, Fg
is the amplitude of a flare, ty represents the approximate time of the flare's
peak, T, measures the rise time, and Ty is the decay time. Then, the total
duration of a flare can be estimated

Ta=2(T, + Tqg). (9)J

The observed flare time duration was transformed to a rest frame of
reference using the relation

res Ts
Tyt = (10) ]




Flares duration
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Figure 8: The distribution of flares duration times.




AGNSs physical parameters

The variability characteristics were linked to the physical properties of AGNs
adapted from Chen et al. (2023)

VVYVYVVVVVVYVYY

the redshift z
the black hole mass M

the disc luminosity Lgisc in units of erg s—1

the observed gamma-ray luminosity L, in units of erg s!

the 1.4 GHz radio flux f; 4qHz in units of Jy

the jet kinetic power Pje; in units of erg st
sy

the synchrotron peak frequency Yok

the Compton dominance CD

the curvature bsy,

the synchrotron peak frequency luminosity L)

Definite correlations were found.




Threshold vs AGNs physical parameters
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Figure 9: Correlations between the calculated threshold and other parameters taken from Chen
et al. (2023).



Flares duration vs AGNs physical parameters
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Figure 10: Correlations between the determined flares duration and other parameters taken from
Chen et al. (2023) with outliers removed.



Next step: spectral energy distribution modeling
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Figure 11: The broadband SED modeling results from Sahakyan et al. (2024).




Conclusions

» The SETAR model provides more objective and robust results in
identifying flares in blazars' light curves than the often-used arbitrary
methods.

» Locating flaring states is of importance when it comes to modeling the
physical properties of blazars as it can provide valuable information on
physical processes governing the variability, especially the activity during
flares.

» Progress in the understanding of blazar variability may come from the
study of a much larger sample of objects, focusing not only on the light
curves but also a more detailed SED analysis, preferably the whole
selection from the Fermi-LAT catalog, for a broader population analysis.
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