

1

Broad Line Region gas metallicity along the Quasar Main Sequence

Alberto Floris

Università degli Studi di Padova (UniPD) Centrum Fizyki Teoretycznej (CFT)

Unified model of Active Galactic Nuclei

- Galaxies accreting matter onto their Supermassive Black Hole
- Differences among objects driven by:
	- **Orientation**
- UV and optical emission from:
	- Accretion Disk
	- Broad Line Region (BLR)
	- Narrow Line Region (NLR)
- We restrict ourselves to Type-I unobscured AGNs
- Model does not describe well diversity inside Type-I AGNs

Beckmann & Shrader, 2012

- Principal Component Analysis discovered strong anticorrelation between two parameters (Boroson & Green, 1992):
	- FWHM(Hβ)
	- R_{FeII}

Marziani et al., 2018

- Principal Component Analysis discovered strong anticorrelation between two parameters (Boroson & Green, 1992):
	- FWHM(Hβ)
	- R_{FeII}

- Principal Component Analysis discovered strong anticorrelation between two parameters (Boroson & Green, 1992):
	- FWHM(Hβ)
	- R_{Fell}
- Three Populations of Type-I AGNs:
	- Population A
	- Extreme Population A (xA)
	- Population B
- Spectral types, in regions of the parameter space with different values of R_{FeII} and FWHM(H β)
- MS driven by Eddington ratio (∝ L/M)?

- Historically explored for different mass ranges
- Different tracks for different black hole masses
- NLSy1s found below quasars

- Historically explored for different mass ranges
- Different tracks for different black hole masses
- NLSy1s found below quasars
- Quasars in the middle

- Historically explored for different mass ranges
- Different tracks for different black hole masses
- NLSy1s found below quasars
- Quasars in the middle
- More massive objects found at higher thresholds of FWHM(Hβ)

- Physical and geometrical properties of the BLR of AGNs not well understood
- Observed trends of ionization parameter *U* and density $n_{\rm H}$ along the MS
- Several works revealed discrepancy between metallicity *Z* in the BLR and metallicity of the host galaxy (Xu et al., 2018)
- Selective enrichment close to the Active Nucleus?

Marziani et al., 2018

- Previous works focused on:
	- Specific STs along the MS
	- Different luminosity bins, $\frac{1}{\text{high log}}L_{\text{bol}}$ (>47 erg/s)
	- Different z (>2)
- Pop. B objects explored in Marziani et al., 2023, xA sources in Sniegowska et al., 2021; Garnica et al., 2022
- Need to consider the whole MS at low *z* to do a systematic study of the trend

Floris et al., 2024

Sample definition and observations

- 13 Type-I AGNs at low-redshift (0.009<z<0.472) spread over the MS
- UV observations with HST:
	- COS (S/N \sim 50, 0.10 Å resolution)
	- FOS (S/N \sim 40, 0.25 Å resolution)
	- STIS (S/N \sim 40, 0.50 Å resolution)
- Optical observations $(S/N \sim 60, 1 \text{ Å resolution})$:
	- KPNO 2.1m telescope
	- OAN 2.1m telescope
	- SOAR telescope
	- ESO 1.52m telescope
- Non-coeval spectra

- Multi-component fitting using Specfit task from IRAF
- Broad lines decomposed in different components associated with different regions:
	- Broad Component (BC) Virial
	- Very Broad Component (VBC) Inner virial
	- Blueshifted Component (BLUE) Outflow

12

- Multi-component fitting using Specfit task from IRAF
- Broad lines decomposed in different components associated with different regions:
	- Broad Component (BC) Virial
	- Very Broad Component (VBC) Inner virial
	- Blueshifted Component (BLUE) Outflow

- Multi-component fitting using Specfit task from IRAF
- Broad lines decomposed in different components associated with different regions:
	- Broad Component (BC) Virial
	- Very Broad Component (VBC) Inner virial
	- Blueshifted Component (BLUE) Outflow

Floris et al., 2024

Floris et al., 2024

- Lines: a tool to inspect the BLR
- Population A (Mrk 335):
	- BC
- Extreme Population A (LEDA 51016):
	- BC
	- BLUE
- Population B (Fairall 9):
	- BC
	- VBC

UV and optical spectra of Mrk 335, LEDA 51016 and Fairall 9

CLOUDY photoionization simulations

- 10 Diagnostic line ratios obtained from measured lines are used to infer properties of the gas
- Photoionization simulations spanning a wide range of values of $Z(10^{-3} - 10^{3} Z_{\odot})$, *U* and $n_{\rm H}$
- Appropriately calculated for each population's SED
- χ^2 is computed to confront diagnostic ratios from measurements with those from simulations

BLR parameter estimates

- Diagnostic ratios sensitive to density $n_{\rm H}$, ionization parameter *U* and metallicity *Z*:
	- (SiIV+OIV])/CIV
	- (SiIV+OIV])/HeII
	- CIV/HeII
	- CIV/Hβ
	- AlIII/CIV
	- AlIII/SiIII]
	- SiIII]/CIII]
	- CIII]/CIV
	- FeII/Hβ
	- $HeII_{\text{opt}}/H\beta$
- Metallicity values and confidence regions at 1σ computed for minimum χ^2

Mrk 509 – Population A \overline{z} $\overline{2}$

Alberto Floris

BLR parameter estimates

- Diagnostic ratios sensitive to density $n_{\rm H}$, ionization parameter *U* and metallicity *Z*:
	- (SiIV+OIV])/CIV
	- (SiIV+OIV])/HeII
	- CIV/HeII
	- CIV/Hβ
	- AlIII/CIV
	- AlIII/SiIII]
	- SiIII]/CIII]
	- CIII]/CIV
	- FeII/Hβ
	- $HeII_{opt}/H\beta$
- Metallicity values and confidence regions at 1σ computed for minimum χ^2

$\overline{2}$ \bullet $^{-1}$ $log Z$ [Z_{\odot}] $log Z$ [Z_{\odot}] $\frac{1}{2}$ \bigtriangleup -3 $^{-1}$ $^{-1}$ $-\ell$ 12 13 14 8 10 11 8 9 10 11 12 13 14 -4 -3 -2 -1 $\overline{0}$ 1 $log n_H$ [cm⁻³] $log n_H$ [cm⁻³] $log U$

BC 1σ confidence

BC Minimum $χ²$

LEDA $51016 - xA$

BLR parameter estimates

- Diagnostic ratios sensitive to density $n_{\rm H}$, ionization parameter *U* and metallicity *Z*:
	- (SiIV+OIV])/CIV
	- (SiIV+OIV])/HeII
	- CIV/HeII
	- CIV/Hβ
	- AlIII/CIV
	- AlIII/SiIII]
	- SiIII]/CIII]
	- CIII]/CIV
	- FeII/Hβ
	- $HeII_{\text{opt}}/H\beta$
- Metallicity values and confidence regions at 1σ computed for minimum χ^2

NGC 3783 – Population B

Main Sequence

- Plotting the MS Optical Plane of our sample yields interesting results
- Clear difference in *Z* among spectral types
- Population $B \rightarrow$ metal-poor gas/solar?
- Population A $\rightarrow \sim$ solar metallicity
- Extreme Population $A \rightarrow h$ ighly metal rich gas ($Z > 10 Z_{\odot}$)
- PHL 1092, $Z \sim 1000 Z_{\odot} \rightarrow$ Out-of-scale

Floris et al., 2024

- Consensus that gas in BLR exhibits supersolar *Z* (Maiolino & Mannucci, 2019)
- 1000 Z_{\odot} is still out of scale!
- Are high *Z* solutions the result of some bias?
- What could create this effect?
	- Statistical errors? \rightarrow NO!

2024 *Floris et al., 2024* Floris et al.,

- Consensus that gas in BLR exhibits supersolar *Z* (Maiolino & Mannucci, 2019)
- 1000 Z_{\odot} is still out of scale!
- Are high *Z* solutions the result of some bias?
- What could create this effect?
	- Statistical errors? \rightarrow NO!
	- Optical/UV mismatch? \rightarrow NO!

- Consensus that gas in BLR exhibits supersolar *Z* (Maiolino & Mannucci, 2019)
- 1000 Z_{\odot} is still out of scale!
- Are high *Z* solutions the result of some bias?
- What could create this effect?
	- Statistical errors? \rightarrow NO!
	- Optical/UV mismatch? \rightarrow NO!
	- Inappropriate SED? \rightarrow NO!

Floris et al., 2024

- Consensus that gas in BLR exhibits supersolar *Z* (Maiolino & Mannucci, 2019)
- 1000 Z_{\odot} is still out of scale!
- Are high *Z* solutions the result of some bias?
- What could create this effect?
	- Statistical errors? \rightarrow NO!
	- Optical/UV mismatch? \rightarrow NO!
	- Inappropriate SED? \rightarrow NO!
	- Microturbulence? \rightarrow YES!

Floris et al., 2024

The trend

- Trend of metallicity along the MS
- Dip in A1 spectral type due to low- R_{FeII} sources
- Steady increase in *Z* with spectral types

Floris et al., 2024

- $P_P = 0.918$
 $P = 0.001$
 $A = -1.291 \pm 0.084$
 $B = 0.713 \pm 0.072$ $r_P = 0.785$
 $P = 0.005$
 $A = 2.141 \pm 0.363$
 $B = 1.737 \pm 0.388$ $r_P = 0.836$
 $P = 0.003$ Зŀ 0.0 $A = -0.257 \pm 0.265$
B = 1.436 ± 0.351 -0.2 $log(L/L_{\text{Edd}})$
 $\frac{6}{80}$ $\frac{6}{50}$ $log Z$ [Z ₀] $\overline{}$ \odot $\overline{\mathbf{Z}}$ $log Z$ -1.0 -1.2 -1 -1 -1.5 0.0 $\overline{0.5}$ $\overline{1.0}$ $\overline{1.5}$ 2.0 -1.0 -0.5 $\overline{0.0}$ $\overline{0.0}$ 0.5 $\overline{1.0}$ $\overline{1.5}$ $\overline{2.0}$ -1.5 R_{FeII} $log(L/L_{\rm Edd})$ R_{Fell} $r_{\rm P} = 0.616$ $r_{\rm P} = -0.011$
 $P = 0.968$ $r_{P} = 0.603$
 $P = 0.029$ $\overline{}$ зF $P = 0.026$ 46.0 ⊣ $log Z$ [Z ₀] **i** \odot [erg 45.5 \overline{Z} $log Z$ $\frac{1}{2}$ 45.0 44.5^k -1 -1 7.0 $\frac{1}{7.5}$ $\overline{8.0}$ 45.0 45.5 46.0 $\frac{1}{2.0}$ $\frac{44.5}{ }$ $\overline{1.5}$ 0.0 0.5 1.0 $log M_{BH}$ [M_o] $log L_{bol}$ [erg s⁻¹] R_{Fell}
- Strong correlations:
	- $R_{\text{FeII}} Z$
	- $R_{\text{FeII}} L/L_{Edd}$
	- $L/L_{Edd} Z$
- M_{BH} does not correlate with $Z \rightarrow$ puzzling
- Trend of metallicity along the MS

Floris et al., 2024

• CLOUDY simulations allow for an independent measurement of the BLR distance from the SMBH using two parameters determined from the best fitting solution:

 $U=$ $Q(H)$ $4\pi r_{\rm BLR}^{-2}$ c $n_{\rm H}$

- We can confront the inferred r_{BLR} with time-delays obtained from H β reverberation mapping for each object
- For most sources the two determinations are consistent within error
- Greatest source of uncertainty in this determination is the CIII] intensity measurement, pushing towards lower $n_{\rm H}$

- Evolutionary hypothesis
- xA Quasars:
	- Young objects experience powerful star formation after merger episodes
	- Accretion Modified Stars (AMS) accrete matter from the accretion disk of the SMBH
	- After reaching high mass explode as core -collapse Supernovae
	- Cascade of Supernova events occurs in the time of \sim Myr
	- Production of highly metallic gas (Wang et al., 2023)

- Population A:
	- Strong winds develop in high *L/ LEdd* objects
	- xA objects gradually exhibit less extreme characteristics
	- Highly metal rich gas is slowly dispersed in the interstellar and intergalactic medium
- Population B:
	- The gas reservoir is depleted after some time
	- Metal poor gas
	- Older objects exhibit larger SMBHs and lower $\frac{1}{29}$ accretion rates 29

From young / rejuvenated (NLSy1s in extreme Population A, including jetted sources) to massive, low Eddington radiators, "starving"

Conclusions and future work

- Sample of 13 low-*z* Type-I AGNs
- Recipe: estimation of metallicity in the BLR using CLOUDY simulations and multicomponent fitting
- Confirmed supersolar metallicity for xA sources
- Highest *Z* objects significantly affected by microturbulence
- Evidence of strong *Z* trend along the MS, from 0.1 to 50 Z_{\odot}
- Metallicity trend points towards evolutionary hypothesis

Conclusions and future work

- Sample of 13 low-*z* Type-I AGNs
- Recipe: estimation of metallicity in the BLR using CLOUDY simulations and multicomponent fitting
- Confirmed supersolar metallicity for xA sources
- Highest *Z* objects significantly affected by microturbulence
- Evidence of strong *Z* trend along the MS, from 0.1 to 50 Z_{\odot}
- Metallicity trend points towards evolutionary hypothesis
- In the future:
	- Reduction of approximations in place
	- Use of simultaneous observations, with more diagnostic ratios in a wider wavelength range
	- Extending the use of this technique to larger sample, also at high-*z,* made possible by JWST

Thank you for your attention